Construction of stochastic PDEs for feedback control of surface roughness in thin film deposition

In this work, we develop a systematic method for the construction of linear stochastic partial differential equation (PDE) models for feedback control of surface roughness in thin film deposition. The method is applied to a representative deposition process and is successfully validated through simulations.

[1]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[2]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[3]  S. Edwards,et al.  The surface statistics of a granular aggregate , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Michael A. Saunders,et al.  Procedures for optimization problems with a mixture of bounds and general linear constraints , 1984, ACM Trans. Math. Softw..

[5]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[6]  D. Vvedensky,et al.  Stochastic equations of motion for epitaxial growth. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Lauritsen,et al.  Noisy Kuramoto-Sivashinsky equation for an erosion model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  A. Maritan,et al.  Stochastic growth equations and reparametrization invariance , 1996 .

[9]  D. Vlachos Multiscale integration hybrid algorithms for homogeneous–heterogeneous reactors , 1997 .

[10]  H. Atwater,et al.  Monte Carlo simulations of epitaxial growth: comparison of pulsed laser deposition and molecular beam epitaxy , 1998 .

[11]  P. Christofides,et al.  Plasma enhanced chemical vapor deposition: Modeling and control , 1999 .

[12]  Evanghelos Zafiriou,et al.  Inverse model-based real-time control for temperature uniformity of RTCVD , 1999 .

[13]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[14]  Doochul Kim,et al.  Derivation of continuum stochastic equations for discrete growth models. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Antonios Armaou,et al.  Microscopic/stochastic timesteppers and “coarse” control: A KMC example , 2003 .

[16]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[17]  D. Vvedensky Edwards-Wilkinson equation from lattice transition rules. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  P. Christofides,et al.  Feedback control of growth rate and surface roughness in thin film growth , 2003 .

[19]  P. Christofides,et al.  Estimation and control of surface roughness in thin film growth using kinetic Monte-Carlo models , 2003 .

[20]  Panagiotis D. Christofides,et al.  Feedback control of surface roughness of GaAs [001] thin films using kinetic Monte-Carlo models , 2004, Proceedings of the 2004 American Control Conference.

[21]  Antonios Armaou,et al.  Time‐steppers and ‘coarse’ control of distributed microscopic processes , 2004 .

[22]  Richard M. Murray,et al.  Reduction and identification methods for Markovian control systems, with application to thin film deposition , 2004 .

[23]  P. Christofides,et al.  Real-time carbon content control for PECVD ZrO/sub 2/ thin-film growth , 2004, IEEE Transactions on Semiconductor Manufacturing.

[24]  P. Christofides,et al.  Feedback Control of Surface Roughness Using Stochastic PDEs (R&D Note) , 2005 .

[25]  Panagiotis D. Christofides,et al.  Feedback control of surface roughness in sputtering processes using the stochastic Kuramoto-Sivashinsky equation , 2005, Comput. Chem. Eng..

[26]  P. Christofides,et al.  Dynamics and control of thin film surface microstructure in a complex deposition process , 2005 .

[27]  P. Christofides,et al.  Multivariable predictive control of thin film deposition using a stochastic PDE model , 2005, Proceedings of the 2005, American Control Conference, 2005..