Existence, Uniqueness, and Parametrization of Lagrangian Invariant Subspaces

The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization are given. Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic Riccati equations follow as simple corollaries.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[3]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[4]  Gerhard Freiling,et al.  Non-Symmetric Matrix Riccati Equations , 1995 .

[5]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[6]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  Ralph Byers,et al.  Hamiltonian and symplectic algorithms for the algebraic riccati equation , 1983 .

[9]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[12]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[13]  A. Bunse-Gerstner Matrix factorizations for symplectic QR-like methods , 1986 .

[14]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[15]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[16]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[17]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[19]  A. Bunse-Gerstner,et al.  Numerical Methods for Algebraic Riccati Equations , 1989 .

[20]  V. Mehrmann,et al.  A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .

[21]  Leiba Rodman,et al.  Stability of invariant maximal semidefinite subspaces. I , 1984 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  M. Shayman Homogeneous indices, feedback invariants and control structure theorem for generalized linear systems , 1988, 26th IEEE Conference on Decision and Control.

[24]  Leiba Rodman,et al.  Stability of Invariant Lagrangian Subspaces II , 1989 .

[25]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[26]  R. Byers A Hamiltonian $QR$ Algorithm , 1986 .

[27]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[28]  Volker Mehrmann,et al.  Numerical methods in control , 2000 .