Breaking optical diffraction limitation using optical Hybrid-Super-Hyperlens with radially polarized light.

We propose and analyze an innovative device called "Hybrid-Super-Hyperlens". This lens is made of two hyperbolic metamaterials with different signs in their dielectric tensor and different isofrequency dispersion curves. The ability of the proposed lens to break the optical diffraction limit is demonstrated using numerical simulations (with the resolution power of about λ/6). Both a pair of nano-slits and a nano-ring can be imaged and resolved by the proposed lens using the radially polarized light source. Such a lens has great potential applications in photolithography and real-time nanoscale imaging.

[1]  B. Chichkov,et al.  A superlens for the deep ultraviolet , 2009 .

[2]  Hongkai Wu,et al.  Reduction photolithography using microlens arrays: applications in gray scale photolithography. , 2002, Analytical chemistry.

[3]  Zhaowei Liu,et al.  Imaging visible light using anisotropic metamaterial slab lens. , 2009, Optics express.

[4]  Changtao Wang,et al.  Improving resolution of superlens lithography by phase-shifting mask. , 2011, Optics express.

[5]  Vladimir M. Shalaev,et al.  Superlens based on metal-dielectric composites , 2005 .

[6]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[7]  You Zhe Ho,et al.  Optical Hybrid-Superlens Hyperlens for Superresolution Imaging , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[9]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[10]  Q. Zhan Trapping metallic Rayleigh particles with radial polarization. , 2004, Optics express.

[11]  Satoshi Kawata,et al.  Scanning probe optical microscopy using a metallic probe tip , 1995 .

[12]  Masud Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009 .

[13]  Din Ping Tsai,et al.  Gain-assisted hybrid-superlens hyperlens for nano imaging. , 2012, Optics express.

[14]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[15]  David R. Smith,et al.  Sub-diffraction imaging with compensating bilayers , 2005 .

[16]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[17]  R. Botet,et al.  Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. , 1994, Physical review letters.

[18]  Din Ping Tsai,et al.  Photon scanning tunneling microscope study of optical waveguides , 1990 .

[19]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[20]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[21]  Ququan Wang,et al.  Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. , 2010, ACS nano.

[22]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[23]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[24]  Asher A. Friesem,et al.  The formation of laser beams with pure azimuthal or radial polarization , 2000 .

[25]  M. Mansuripur,et al.  Transmission of light through slit apertures in metallic films , 2004, IEEE Transactions on Magnetics.

[26]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[27]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.

[28]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[29]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[30]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.