Additivity violation of quantum channels via strong convergence to semi-circular and circular elements

Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.

[1]  Christopher King Maximal p-norms of entanglement breaking channels , 2003, Quantum Inf. Comput..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Phillip A. Ostrand,et al.  COMPUTING NORMS IN GROUP C*-ALGEBRAS.* , 1976 .

[4]  Alexandru Nica,et al.  Lectures on the Combinatorics of Free Probability , 2006 .

[5]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[6]  B. Collins Haagerup's inequality and additivity violation of the Minimum Output Entropy , 2016, 1603.00577.

[7]  R. Speicher,et al.  Stochastic calculus with respect to free Brownian motion and analysis on Wigner space , 1998 .

[8]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[9]  Christopher King,et al.  Comments on Hastings’ Additivity Counterexamples , 2009, 0905.3697.

[10]  Hari Bercovici,et al.  Outliers in the spectrum of large deformed unitarily invariant models , 2012, 1412.4916.

[11]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[12]  B. Collins,et al.  Low entropy output states for products of random unitary channels , 2012, 1208.1449.

[13]  Ion Nechita,et al.  Almost One Bit Violation for the Additivity of the Minimum Output Entropy , 2013, Communications in Mathematical Physics.

[14]  Guillaume Aubrun,et al.  Hastings’s Additivity Counterexample via Dvoretzky’s Theorem , 2010, 1003.4925.

[15]  Peter W. Shor,et al.  The Additivity Conjecture in Quantum Information Theory , 2005 .

[16]  B. Collins,et al.  Towards a state minimizing the output entropy of a tensor product of random quantum channels , 2011, 1111.6269.

[17]  B. Collins,et al.  The strong asymptotic freeness of Haar and deterministic matrices , 2011, 1105.4345.

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[20]  Christopher King,et al.  Entanglement of random subspaces via the Hastings bound , 2009, 0907.5446.

[21]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[22]  Guillaume Aubrun,et al.  Non-additivity of Renyi entropy and Dvoretzky's Theorem , 2009, 0910.1189.

[23]  Motohisa Fukuda,et al.  Revisiting Additivity Violation of Quantum Channels , 2013, 1307.0707.

[24]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[25]  B. Collins,et al.  On the convergence of output sets of quantum channels , 2013, 1311.7571.

[26]  Concentration estimates for random subspaces of a tensor product, and application to Quantum Information Theory. , 2020, 2012.00159.

[27]  Michal Horodecki,et al.  On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..

[28]  A. Guionnet,et al.  Free probability and random matrices , 2012 .

[29]  B. Collins,et al.  Estimates for compression norms and additivity violation in quantum information , 2014, 1408.3957.

[30]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[31]  The free analogue of noncentral chi-square distributions and symmetric quadratic forms in free random variables , 1999 .

[32]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[33]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[34]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[35]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[36]  Roland Speicher,et al.  Free Probability and Random Matrices , 2014, 1404.3393.

[37]  A. Karimi,et al.  Master‟s thesis , 2011 .

[38]  A. S. Holevo Complementary Channels and the Additivity Problem , 2005 .

[39]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[40]  P. Hayden,et al.  Black hole microstates vs. the additivity conjectures , 2020, 2012.07861.

[41]  Christopher King,et al.  Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .