Efficient finite element methodology based on cartesian grids: application to structural shape optimization
暂无分享,去创建一个
Juan José Ródenas | José Albelda | F. J. Fuenmayor | E. Nadal | J. E. Tarancón | M. Tur | F. Fuenmayor | J. Ródenas | M. Tur | E. Nadal | J. Albelda | J. Albelda
[1] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[2] Philippe Angot,et al. Fictitious domain methods to solve convection-diffusion problems with general boundary conditions , 2005 .
[3] Patrick Patrick Anderson,et al. A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .
[4] Lucy T. Zhang,et al. Immersed finite element method , 2004 .
[5] Marc Duflot,et al. Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .
[6] T. Rabczuk,et al. A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .
[7] O. C. Zienkiewicz,et al. Superconvergence and the superconvergent patch recovery , 1995 .
[8] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[9] Nils-Erik Wiberg,et al. Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .
[10] Grégory Legrain,et al. Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches , 2012, Computational Mechanics.
[11] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[12] Ted Belytschko,et al. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .
[13] Farhang Daneshmand,et al. Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM , 2009 .
[14] R. Löhner,et al. Adaptive embedded unstructured grid methods , 2004 .
[15] Mark S. Shephard,et al. An algorithm for multipoint constraints in finite element analysis , 1979 .
[16] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[17] Valentino Pediroda,et al. Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow , 2009, J. Comput. Phys..
[18] Daniel Rixen,et al. Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm , 1998 .
[19] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[20] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[21] S. Bordas,et al. A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .
[22] Gabriel Bugeda,et al. On the need for the use of error‐controlled finite element analyses in structural shape optimization processes , 2011 .
[23] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[24] Pedro Díez,et al. Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .
[25] Raino A. E. Mäkinen,et al. A moving mesh fictitious domain approach for shape optimization problems , 2000 .
[26] Ted Belytschko,et al. Modelling crack growth by level sets in the extended finite element method , 2001 .
[27] R. Storn,et al. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .
[28] Juan José Ródenas,et al. Error estimation and error bounding in energy norm based on a displacement recovery technique , 2012 .
[29] J. Prévost,et al. Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .
[30] A. Diaz,et al. Solving three-dimensional layout optimization problems using fixed scale wavelets , 2000 .
[31] Javier Oliver,et al. CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .
[32] Osvaldo M. Querin,et al. Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces , 2010 .
[33] Ivo Babuška,et al. Assessment of the cost and accuracy of the generalized FEM , 2007 .
[34] A. Jahangirian,et al. Adaptive unstructured grid generation for engineering computation of aerodynamic flows , 2008, Math. Comput. Simul..
[35] I. Babuska,et al. The generalized finite element method , 2001 .
[36] Martin Rumpf,et al. Finite Element Simulation of Bone Microstructures , 2007 .
[37] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[38] O. C. Zienkiewicz,et al. Superconvergent patch recovery techniques – some further tests , 1993 .
[39] Joseph E. Bishop,et al. Rapid stress analysis of geometrically complex domains using implicit meshing , 2003 .
[40] Juan José Ródenas,et al. Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .
[41] M. Berger,et al. An Adaptive Version of the Immersed Boundary Method , 1999 .
[42] Charbel Farhat,et al. A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions , 2002 .
[43] Stéphane Bordas,et al. Strain smoothing in FEM and XFEM , 2010 .
[44] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[45] Stéphane Bordas,et al. Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .
[46] P. Hansbo,et al. Fictitious domain finite element methods using cut elements , 2012 .
[47] Kyung K. Choi,et al. Remesh-free shape optimization using the wavelet-Galerkin method , 2004 .
[48] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[49] Juan José Ródenas,et al. Report: Error estimation of recovered solution in FE analysis , 2012, ArXiv.
[51] Grant P. Steven,et al. Fixed grid finite elements in elasticity problems , 1999 .
[52] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[53] Grégory Legrain,et al. High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .
[54] E. Maunder,et al. Effective error sttimation from continous, boundary admissible estimated stress fields , 1996 .
[55] W. Shyy,et al. Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .
[56] Juan José Ródenas,et al. A recovery‐type error estimator for the extended finite element method based on singular+smooth stress field splitting , 2008 .
[57] D. Greaves,et al. Using hierarchical Cartesian grids with multigrid acceleration , 2007 .
[58] Peter Hansbo,et al. Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .
[59] Bhushan Lal Karihaloo,et al. Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .
[60] O. González-Estrada,et al. Accurate recovery-based upper error bounds for the extended finite element framework , 2010 .
[61] Yuri A. Kuznetsov,et al. Fictitious Domain Methods For The Numerical Solution Of Three-Dimensional Acoustic Scattering Proble , 1999 .
[62] S. Bordas,et al. A simple error estimator for extended finite elements , 2007 .