Total least squares algorithms based on rank-revealing complete orthogonal decompositions

The total least squares (TLS) method has proven to be eeective in many applications which involve a subproblem requiring the solution of a system of linear equations with a numerically rank-deecient coeecient matrix. The TLS method typically requires a singular value decomposition, but practical considerations call for more eecient, yet reliable, methods. We discuss how eecient and reliable complete orthogonal decompositions can be used in TLS problems.

[1]  J. Barlow,et al.  An efficient rank detection procedure for modifying the ULV decomposition , 1998 .

[2]  S. Huffel,et al.  TLS based methods for exponential parameter estimation , 1997 .

[3]  Jesse L. Barlow,et al.  Solving recursive TLS problems using the rank-revealing ULV decomposition , 1997 .

[4]  Sabine Van Huffel,et al.  TLS applications in biomedical signal processing , 1997 .

[5]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[6]  L. Eldén,et al.  Stability analysis and fast algorithms for triangularization of Toeplitz matrices , 1997 .

[7]  Jang-Gyu Lee,et al.  On updating the singular value decomposition , 1996, Proceedings of International Conference on Communication Technology. ICCT '96.

[8]  Ricardo D. Fierro,et al.  Perturbation Analysis for Two-Sided (or Complete) Orthogonal Decompositions , 1996, SIAM J. Matrix Anal. Appl..

[9]  H. Zha,et al.  An algorithm and a stability theory for downdating the ULV decomposition , 1996 .

[10]  James R. Bunch,et al.  Perturbation theory for orthogonal projection methods with applications to least squares and total least squares , 1996 .

[11]  Michael W. Berry,et al.  Low-rank Orthogonal Decompositions for Information Retrieval Applications , 1995, Numer. Linear Algebra Appl..

[12]  Søren Holdt Jensen,et al.  Reduction of broad-band noise in speech by truncated QSVD , 1995, IEEE Trans. Speech Audio Process..

[13]  Stanley C. Eisenstat,et al.  Downdating the Singular Value Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[14]  James R. Bunch,et al.  Bounding the Subspaces from Rank Revealing Two-Sided Orthogonal Decompositions , 1995, SIAM J. Matrix Anal. Appl..

[15]  James R. Bunch,et al.  Orthogonal projection and total least squares , 1995, Numer. Linear Algebra Appl..

[16]  D. Sorensen Implicitly restarted arnoldi/lanczos methods and large scale svd applications , 1995 .

[17]  S. Van Huffel,et al.  Fast algorithms for signal subspace fitting with toeplitz matrices and applications to exponential data modeling , 1995 .

[18]  Haesun Park,et al.  Downdating the Rank-Revealing URV Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[19]  K. J. Ray Liu,et al.  URV ESPRIT for tracking time-varying signals , 1994, IEEE Trans. Signal Process..

[20]  Bin Yang,et al.  An adaptive algorithm of linear computational complexity for both rank and subspace tracking , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  Sabine Van Huffel,et al.  Enhanced resolution based on minimum variance estimation and exponential data modeling , 1993, Signal Process..

[22]  James G. Nagy,et al.  Fast Inverse QR Factorization for Toeplitz Matrices , 1993, SIAM J. Sci. Comput..

[23]  G. Stewart Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..

[24]  M. Moonen,et al.  A systolic array for SVD updating , 1993 .

[25]  G. Stewart,et al.  A block QR algorithm and the singular value decomposition , 1993 .

[26]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[27]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[28]  D. van Ormondt,et al.  Analysis of NMR Data Using Time Domain Fitting Procedures , 1992 .

[29]  M. Moonen,et al.  AN SVD UPDATING ALGORITHM FOR SUBSPACE TRACKING , 1992 .

[30]  J. Kuczy,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .

[31]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[32]  C. Pan A modification to the linpack downdating algorithm , 1990 .

[33]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[34]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[35]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[36]  Sabine Van Huffel,et al.  The partial total least squares algorithm , 1988 .

[37]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[38]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[39]  D. van Ormondt,et al.  Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .

[40]  J. Cuppen,et al.  The Singular Value Decomposition in Product Form , 1983 .

[41]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[42]  A. K. Cline,et al.  Generalizing the LINPACK Condition Estimator , 1981 .

[43]  A. Sluis,et al.  Restoring rank and consistency by orthogonal projection , 1979 .

[44]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .