On z-analogue of Stepanov-Lomonosov-Polesskii inequality

Stepanov@?s inequality and its various extensions provide an upper bound for connectedness probability for a Bernoulli-type random subgraph of a given graph. We have found an analogue of this bound for the expected value of the connectedness-event indicator times a positive z raised to the number of edges in the random subgraph. We demonstrate the power of this bound by a quick derivation of a relatively sharp bound for the number of the spanning connected, sparsely edged, subgraphs of a high-degree regular graph.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[3]  Brendan D. McKay,et al.  The Asymptotic Number of Labeled Connected Graphs with a Given Number of Vertices and Edges , 1990, Random Struct. Algorithms.

[4]  Joel H. Spencer,et al.  Counting connected graphs asymptotically , 2006, Eur. J. Comb..

[5]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[6]  Donald E. Knuth,et al.  The Expected Linearity of a Simple Equivalence Algorithm , 1978, Theor. Comput. Sci..

[7]  Nicholas C. Wormald,et al.  Corrigendum to "Counting connected graphs inside-out" [J. Combin. Theory Ser. B 93 (2005) 127-172] , 2008, J. Comb. Theory, Ser. B.

[8]  Lajos Takács A generalization of an inequality of Stepanov , 1990, J. Comb. Theory, Ser. B.

[9]  B. Bollobás The evolution of random graphs , 1984 .

[10]  Marek Biskup,et al.  Large-deviations/thermodynamic approach to percolation on the complete graph , 2007 .

[11]  Colin McDiarmid,et al.  Bisecting sparse random graphs , 2001 .

[12]  Tomasz Łuczak,et al.  On the number of sparse connected graphs , 1990 .

[13]  V. E. Stepanov On the Probability of Connectedness of a Random Graph $\mathcal{G}_m (t)$ , 1970 .

[14]  R. Durrett Probability: Theory and Examples , 1993 .

[15]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[16]  Marek Biskup,et al.  J un 2 00 5 LARGE-DEVIATIONS / THERMODYNAMIC APPROACH TO PERCOLATION ON THE COMPLETE GRAPH , 2007 .