On z-analogue of Stepanov-Lomonosov-Polesskii inequality
暂无分享,去创建一个
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] Edward M. Wright,et al. The number of connected sparsely edged graphs , 1977, J. Graph Theory.
[3] Brendan D. McKay,et al. The Asymptotic Number of Labeled Connected Graphs with a Given Number of Vertices and Edges , 1990, Random Struct. Algorithms.
[4] Joel H. Spencer,et al. Counting connected graphs asymptotically , 2006, Eur. J. Comb..
[5] Richard M. Karp,et al. The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.
[6] Donald E. Knuth,et al. The Expected Linearity of a Simple Equivalence Algorithm , 1978, Theor. Comput. Sci..
[7] Nicholas C. Wormald,et al. Corrigendum to "Counting connected graphs inside-out" [J. Combin. Theory Ser. B 93 (2005) 127-172] , 2008, J. Comb. Theory, Ser. B.
[8] Lajos Takács. A generalization of an inequality of Stepanov , 1990, J. Comb. Theory, Ser. B.
[9] B. Bollobás. The evolution of random graphs , 1984 .
[10] Marek Biskup,et al. Large-deviations/thermodynamic approach to percolation on the complete graph , 2007 .
[11] Colin McDiarmid,et al. Bisecting sparse random graphs , 2001 .
[12] Tomasz Łuczak,et al. On the number of sparse connected graphs , 1990 .
[13] V. E. Stepanov. On the Probability of Connectedness of a Random Graph $\mathcal{G}_m (t)$ , 1970 .
[14] R. Durrett. Probability: Theory and Examples , 1993 .
[15] Nicholas C. Wormald,et al. Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.
[16] Marek Biskup,et al. J un 2 00 5 LARGE-DEVIATIONS / THERMODYNAMIC APPROACH TO PERCOLATION ON THE COMPLETE GRAPH , 2007 .