Clinical and genomic diversity of Treponema pallidum subsp. pallidum: A global, multi-center study of early syphilis to inform vaccine research
暂无分享,去创建一个
J. Radolf | J. Parr | J. Juliano | J. Tucker | A. Seña | M. Caimano | D. Šmajs | Ligang Yang | Bin Yang | J. Salazar | Mitch M Matoga | Heping Zheng | Petra Pospíšilová | Jane S. Chen | L. Ramírez | C. Hennelly | Wentao Chen | Everton B. Bettin | Yinbo Jiang | Kelly L. Hawley | I. Hoffman | M. Moody | P. Pospíšilová | E. Lopez-Medina | Farhang Aghakanian | Jonny A Garcia-Luna | Fabio Vargas Cely | Irving F Hoffman | E. López-Medina | Jonny A García-Luna
[1] Kelika A. Konda,et al. High-throughput nanopore sequencing of Treponema pallidum tandem repeat genes arp and tp0470 reveals clade-specific patterns and recapitulates global whole genome phylogeny , 2022, bioRxiv.
[2] M. A. Moody,et al. Extracellular Loops of the Treponema pallidum FadL Orthologs TP0856 and TP0858 Elicit IgG Antibodies and IgG+-Specific B-Cells in the Rabbit Model of Experimental Syphilis , 2022, mBio.
[3] N. Thomson,et al. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: a genomic epidemiological analysis. , 2022, The Lancet. Microbe.
[4] Kelika A. Konda,et al. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar , 2021, PLoS neglected tropical diseases.
[5] C. Wennerås,et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis , 2021, Nature Microbiology.
[6] L. Sánchez-Busó,et al. Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum , 2021, Molecular biology and evolution.
[7] C. Fairley,et al. Treponema pallidum detection in lesion and non-lesion sites in men who have sex with men with early syphilis: a prospective, cross-sectional study. , 2021, The Lancet. Infectious diseases.
[8] S. Norris,et al. In Vitro Cultivation of the Syphilis Spirochete Treponema pallidum , 2021, Current protocols.
[9] N. Low,et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. , 2020, The Lancet. Infectious diseases.
[10] E. Theel,et al. Molecular and Direct Detection Tests for Treponema pallidum Subspecies pallidum: A Review of the Literature, 1964–2017 , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[11] Yongfei Hu,et al. Analysis of Treponema pallidum strains from China using improved methods for whole-genome sequencing from primary syphilis chancres , 2020, bioRxiv.
[12] S. Ram,et al. The Modern Epidemic of Syphilis. , 2020, The New England journal of medicine.
[13] F. Gherardini,et al. Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in Treponema denticola , 2020, Journal of bacteriology.
[14] N. Thomson,et al. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages , 2018, Nature Communications.
[15] A. Gayet-Ageron,et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme , 2018, PloS one.
[16] Jacqueline A. Keane,et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads , 2017, bioRxiv.
[17] J. Krause,et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster , 2016, Nature Microbiology.
[18] Arvind Anand,et al. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen , 2016, Nature Reviews Microbiology.
[19] H. Rees,et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: Update and next steps , 2016, Vaccine.
[20] J. Radolf,et al. Immune Evasion and Recognition of the Syphilis Spirochete in Blood and Skin of Secondary Syphilis Patients: Two Immunologically Distinct Compartments , 2012, PLoS neglected tropical diseases.
[21] N. Dupin,et al. Evaluation of a PCR Test for Detection of Treponema pallidum in Swabs and Blood , 2012, Journal of Clinical Microbiology.
[22] C. Marra,et al. Isolation and Laboratory Maintenance of Treponema pallidum , 2007, Current Protocols in Microbiology.
[23] D. L. Cox,et al. The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles , 2007, Molecular microbiology.
[24] Conrad C. Huang,et al. UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..
[25] J. Klausner,et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. , 2004, The New England journal of medicine.
[26] A. Marfin,et al. Amplification of the DNA polymerase I gene of Treponema pallidum from whole blood of persons with syphilis. , 2001, Diagnostic microbiology and infectious disease.
[27] L. Stamm,et al. A Point Mutation Associated with Bacterial Macrolide Resistance Is Present in Both 23S rRNA Genes of an Erythromycin-ResistantTreponema pallidum Clinical Isolate , 2000, Antimicrobial Agents and Chemotherapy.
[28] S. Norris,et al. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.