Adaptive modified function projective lag synchronization of hyperchaotic complex systems with fully uncertain parameters

In this article, a novel synchronization scheme, modified function projective lag synchronization (MFPLS), between identical and nonidentical hyperchaotic complex systems with fully uncertain parameters, is proposed. In the proposed general method, the states of two hyperchaotic complex systems with unknown parameters are asymptotically synchronized up to a desired scaling function matrix with time delay, and all of the unknown parameters are identified. The adaptive controller and laws of parameters are designed to achieve MFPLS between the drive and response systems. Theoretical proof and numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.

[1]  Clément Tchawoua,et al.  Chaos Control and Synchronization of a Class of Uncertain Chaotic Systems , 2005 .

[2]  Vladimir L. Derbov,et al.  Properties of the phase space and bifurcations in the complex Lorenz model , 1998 .

[3]  Xiao-Song Yang,et al.  On the existence of generalized synchronizor in unidirectionally coupled systems , 2001, Appl. Math. Comput..

[4]  N. Abraham,et al.  Global stability properties of the complex Lorenz model , 1996 .

[5]  Emad E. Mahmoud,et al.  A Hyperchaotic Complex Chen System and its Dynamics , 2007 .

[6]  Vladimir L. Derbov,et al.  Boundedness of attractors in the complex Lorenz model , 1997 .

[7]  K. Sudheer,et al.  Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system , 2011 .

[8]  Xiaoshan Zhao,et al.  Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters , 2011 .

[9]  Chen Yong,et al.  Function Projective Synchronization of Two Identical New Hyperchaotic Systems , 2007 .

[10]  Yan-Jun Liu,et al.  Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems , 2007, Inf. Sci..

[11]  M. M'Saad,et al.  Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity , 2012 .

[12]  Mandel,et al.  Single-mode-laser phase dynamics. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[13]  Shaocheng Tong,et al.  Robust Adaptive Tracking Control for Nonlinear Systems Based on Bounds of Fuzzy Approximation Parameters , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[14]  Luo Runzi,et al.  Modified projective synchronization of a hyperchaotic system with unknown and/or uncertain parameters , 2011 .

[15]  Yongguang Yu,et al.  Author's Personal Copy Nonlinear Analysis: Real World Applications Adaptive Generalized Function Projective Synchronization of Uncertain Chaotic Systems , 2022 .

[16]  Emad E. Mahmoud,et al.  ANALYSIS OF HYPERCHAOTIC COMPLEX LORENZ SYSTEMS , 2008 .

[17]  Shaocheng Tong,et al.  Adaptive Neural Output Feedback Tracking Control for a Class of Uncertain Discrete-Time Nonlinear Systems , 2011, IEEE Transactions on Neural Networks.

[18]  Rong-ling Lang,et al.  A stochastic complex model with random imaginary noise , 2010 .

[19]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[20]  H. Haken,et al.  Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[21]  Da Lin,et al.  Module-phase synchronization in complex dynamic system , 2010, Appl. Math. Comput..

[22]  Ping Liu,et al.  Anti-synchronization between different chaotic complex systems , 2011 .

[23]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[24]  Yanjun Liu,et al.  Adaptive robust fuzzy control for a class of uncertain chaotic systems , 2009 .

[25]  Yu,et al.  Modified impulsive synchronization of fractional order hyperchaotic systems , 2011 .

[26]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[27]  Hongyue Du,et al.  Function projective synchronization in coupled chaotic systems , 2010 .

[28]  Tiedong Ma,et al.  On the exponential synchronization of stochastic impulsive chaotic delayed neural networks , 2011, Neurocomputing.

[29]  Qingshuang Zeng,et al.  A general method for modified function projective lag synchronization in chaotic systems , 2010 .

[30]  Teh-Lu Liao,et al.  Sliding mode control design for generalized projective synchronization of unified chaotic systems containing nonlinear inputs , 2012 .

[31]  Emad E. Mahmoud,et al.  On the hyperchaotic complex Lü system , 2009 .

[32]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[33]  Chuandong Li,et al.  Estimation on Error Bound of Lag Synchronization of Chaotic Systems with Time Delay and Parameter Mismatch , 2010 .