Target Motion Variability and On-Line Positioning Accuracy during External-Beam Radiation Therapy of Prostate Cancer with an Endorectal Balloon Device

Purpose:To prospectively define the setup error and the interfraction prostate localization accuracy of the planning target volume (PTV) in the presence of an endorectal balloon (ERB) device.Patients and Methods:Weekly portal images (PIs) of 15 patients undergoing external-beam radiotherapy were analyzed. Displacements of the isocenter and the center of the ERB were measured. The setup and target motion variability were assessed with regard to the position variability of the ERB.Results:The setup error was random and target motion variability was largest in the craniocaudal direction. The mean displacement of the isocenter was 2.1 mm (± 1.2 mm SD [standard deviation]), 2.4 mm (± 2.2 mm SD), and 3.8 mm (± 4.0 mm SD) in the left-right, craniocaudal, and anteroposterior directions, respectively (p = 0.1). The mean displacement of the ERB was 2.0 mm (± 1.4 mm SD), 4.1 mm (± 2.0 mm SD), and 3.8 mm (± 3.3 mm SD; p = 0.03). Setup margin and internal margin contributed equally to the PTV margin. Cumulative placement insecurity of the field and the ERB together was 4.0 mm (± 2.1 mm SD) laterally, 6.4 mm (± 2.5 mm SD) craniocaudally, and 7.7 mm (± 7.0 mm SD) anteroposteriorly. The 95% CIs (confidence intervals) were 2.9–5.2 mm, 5.1–7.8 mm, and 3.8–11.5 mm. In 35% of cases, the estimation of the dorsal margin exceeded 1 cm.Conclusion:Margin estimate dorsally may exceed 1 cm and on-line position verification with an ERB cannot be recommended for dose escalation > 70 Gy.Ziel:Analyse des Positionierungsfehlers und der Lokalisationsgenauigkeit der Prostata zwischen den Bestrahlungen unter der Verwendung eines endorektalen Ballons (ERB) zwecks Positionierungshilfe.Patienten und Methodik:Die sequentiellen Einstellungsaufnahmen von 15 Patienten, die in kurativer Absicht eine externe Radiotherapie erhielten, wurden analysiert. Die Positionierungsvariabilität des ERB wurde unter Berücksichtigung der Lagevariabilität des Set-up und des Zielvolumens gemessen.Ergebnisse:Der Einstellungsfehler (systemischer Fehler) zeigte keine Prädispositionen in x-, y- oder z-Richtung. Die Bewegungsvariabilität in kraniokaudaler Richtung war am größten. Die Lagevariabilität des Feldzentrums betrug 2,1 mm (± 1,2 mm), 2,4 mm (± 2,2 mm) und 3,8 mm (± 4,0 mm) in seitlicher, kraniokaudaler und anteroposteriorer Richtung (p = 0,1). Der ERB zeigte eine Lagevariabilität von 2 mm (± 1,4 mm), 4,1 mm (± 2,0 mm) und 3,8 mm (± 3,3 mm) seitlich, kraniokaudal und anteroposterior (p = 0,03). Die Positionsvariabilität des Feldzentrums in Bezug auf die Lokalisation des ERB war vernachlässigbar. Zur kumulativen Zielunsicherheit trugen der systemische und der spezifische Fehler gleichermaßen bei. Die durchschnittliche Lageunsicherheit des Feldes und des Ballons gemeinsam betrug 4,0 mm (± 2,1 mm) lateral, 6,4 mm (± 2,5 mm) kraniokaudal und 7,7 mm (± 7,0 mm) anteroposterior. Die 95%-Konfidenzintervalle betrugen 2.9–5.2 mm, 5.1–7.8 mm, und 3.8–11.5 mm. Der geschätzte Sicherheitsabstand in dorsaler Richtung lag in 35% der Fälle bei > 1 cm.Schlussfolgerung:Um einen Sicherheitsrand von < 1 cm gegen dorsal zu erzielen, reicht ein ERB allein nicht aus. Für Therapien mit Dosen > 70 Gy empfehlen sich zusätzliche Positionierungs- und Positionsverifikationssysteme, um den dorsalen Sicherheitsabstand klein halten zu können.

[1]  P Kijewski,et al.  Analysis of prostate and seminal vesicle motion: implications for treatment planning. , 1996, International journal of radiation oncology, biology, physics.

[2]  C. Belka,et al.  70 Gy or more: which dose for which prostate cancer? , 2005, Journal of Cancer Research and Clinical Oncology.

[3]  E. B. Butler,et al.  Prostate immobilization using a rectal balloon , 2002, Journal of applied clinical medical physics.

[4]  B. Baumert,et al.  The use of a leg holder immobilisation device in 3D-conformal radiation therapy of prostate cancer. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[5]  J. Manola,et al.  A practical method to achieve prostate gland immobilization and target verification for daily treatment. , 2001, International journal of radiation oncology, biology, physics.

[6]  G. Sanguineti,et al.  IMRT to Escalate the Dose to the Prostate while Treating the Pelvic Nodes , 2005, Strahlentherapie und Onkologie.

[7]  D. Dearnaley,et al.  Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial , 1999, The Lancet.

[8]  D P Dearnaley,et al.  CLINICAL STUDIES , 2022 .

[9]  M van Herk,et al.  Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. , 1995, International journal of radiation oncology, biology, physics.

[10]  Rick Chappell,et al.  Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  M van Herk,et al.  Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  T Haycocks,et al.  Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  A. Hoffmann,et al.  Rectal wall sparing effect of three different endorectal balloons in 3D conformal and IMRT prostate radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[14]  B. Baumert,et al.  On-line correction of beam portals in the treatment of prostate cancer using an endorectal balloon device. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  R. Pötter,et al.  [Significance of a rectal balloon as internal immobilization device in conformal radiotherapy of prostatic carcinoma]. , 1999, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[16]  F. Nüsslin,et al.  [Positioning accuracy in conformational prostatic irradiation using portal imaging]. , 2002, Strahlentherapie und Onkologie (Print).

[17]  C. Pelizzari,et al.  Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. , 1995, International journal of radiation oncology, biology, physics.

[18]  Untersuchungen zur Positionierungsgenauigkeit bei Prostatakonformationsbestrahlungen mittels Portal-Imaging , 2002, Strahlentherapie und Onkologie.

[19]  J C Stroom,et al.  Internal organ motion in prostate cancer patients treated in prone and supine treatment position. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  B. Lind,et al.  Dose-Response Relations for Anal Sphincter Regarding Fecal Leakage and Blood or Phlegm in Stools after Radiotherapy for Prostate Cancer , 2005, Strahlentherapie und Onkologie.

[21]  L. Vakaet,et al.  Direct Segment Aperture and Weight Optimization for Intensity-Modulated Radiotherapy of Prostate Cancer , 2004, Strahlentherapie und Onkologie.

[22]  H Alasti,et al.  Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. , 2001, International journal of radiation oncology, biology, physics.

[23]  M. Zelefsky The GETUG 70 Gy vs. 80 Gy randomized trial for localized prostate cancer: feasibility and acute toxicity , 2005 .

[24]  Randall K Ten Haken,et al.  Daily prostate targeting using implanted radiopaque markers. , 2001, International journal of radiation oncology, biology, physics.

[25]  James A. Purdy,et al.  Three-dimensional conformal therapy or standard irradiation in localized carcinoma of prostate: preliminary results of a nonrandomized comparison. , 2000, International journal of radiation oncology, biology, physics.

[26]  J Alfred Witjes,et al.  The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. , 2005, International journal of radiation oncology, biology, physics.

[27]  K. Langen,et al.  Organ motion and its management. , 2001, International journal of radiation oncology, biology, physics.

[28]  H. Vorwerk,et al.  The Impact of Varying Volumes in Rectal Balloons on Rectal Dose Sparing in Conformal Radiation Therapy of Prostate Cancer , 2005, Strahlentherapie und Onkologie.

[29]  R. Pötter,et al.  The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[30]  Patrick A Kupelian,et al.  Hypofractionated intensity-modulated radiotherapy (70 gy at 2.5 Gy per fraction) for localized prostate cancer: long-term outcomes. , 2005, International journal of radiation oncology, biology, physics.

[31]  P. Rzehak,et al.  Health-Related Quality of Life Measurement in Long-Term Survivors and Outcome Following Radical Radiotherapy for Localized Prostate Cancer , 2004, Strahlentherapie und Onkologie.

[32]  George Starkschall,et al.  Prostate cancer radiation dose response: results of the M.D. Anderson phase III randomized trial , 2003 .

[33]  D. Georg,et al.  Comparative treatment planning on localized prostate carcinoma conformal photon- versus proton-based radiotherapy. , 2005, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[34]  Daniel W. Miller,et al.  Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. , 2005, JAMA.