Machine learning – A new kind of cultural tool? A “recontextualisation” perspective on machine learning + interprofessional learning

[1]  W. Bodmer,et al.  Some Thoughts on AI Stimulated by Michael Wooldridge’s Book “The Road to Conscious Machines. The Story of AI” , 2022, Künstliche Intell..

[2]  Ryan J. Lowe,et al.  Training language models to follow instructions with human feedback , 2022, NeurIPS.

[3]  G. Hastings Surveillance Capitalism , 2022, Hyperconsumption.

[4]  R. Lobos Becoming Human: A Theory of Ontogeny , 2021, Estudios Públicos.

[5]  A. Blunden Tool and Sign in Vygotsky’s Development , 2021, Hegel, Marx and Vygotsky.

[6]  Ondrej Majer,et al.  Empiricism in the foundations of cognition , 2021, AI & SOCIETY.

[7]  Rachel J. Wilde,et al.  Client-facing Interprofessional Project Teams: The Role of Engineers’ ‘Situated Judgment’ , 2021, Engineering Studies.

[8]  B. Nardi,et al.  Moving forward with activity theory in a digital world , 2021, Mind, Culture, and Activity.

[9]  M. Pasquinelli,et al.  The Nooscope manifested: AI as instrument of knowledge extractivism , 2020, AI & SOCIETY.

[10]  X. Jia,et al.  Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems , 2020, ACM Comput. Surv..

[11]  D. Guile The concept of “recontextualization”: implications for professional, vocational and workplace learning , 2019 .

[12]  Atle Mikkola Kjøsen,et al.  Inhuman Power , 2019 .

[13]  Harini Suresh,et al.  A Framework for Understanding Unintended Consequences of Machine Learning , 2019, ArXiv.

[14]  Jean-Philippe Cointet,et al.  La revanche des neurones , 2018 .

[15]  The Lancet Respiratory Medicine Opening the black box of machine learning. , 2018, The Lancet. Respiratory medicine.

[16]  Raymond C. Kurzweil,et al.  The Singularity Is Near , 2018, The Infinite Desire for Growth.

[17]  Martin Tamke,et al.  Machine learning for architectural design: Practices and infrastructure , 2018, International Journal of Architectural Computing.

[18]  C. Robert Superintelligence: Paths, Dangers, Strategies , 2017 .

[19]  Ethem Alpaydin,et al.  Machine Learning: The New AI , 2016 .

[20]  Dayong Wang,et al.  Deep Learning for Identifying Metastatic Breast Cancer , 2016, ArXiv.

[21]  Waldo Hasperué,et al.  The master algorithm: how the quest for the ultimate learning machine will remake our world , 2015 .

[22]  Y. Engeström,et al.  Learning by expanding: An activity-theoretical approach to developmental research , 2014 .

[23]  Hamid R. Ekbia,et al.  Heteromation and its (dis)contents: The invisible division of labor between humans and machines , 2014, First Monday.

[24]  D. Guile Professional knowledge and professional practice as continuous recontextualisation: A social practice perspective , 2014 .

[25]  M. Tomasello A Natural History of Human Thinking , 2014 .

[26]  E. Hutchins The cultural ecosystem of human cognition , 2014 .

[27]  J. Derry Vygotsky: Philosophy and Education , 2013 .

[28]  J. Johnstone Supersizing the Mind , 2013 .

[29]  Per Hetland,et al.  The Materiality of Learning , 2012 .

[30]  D. Guile Interprofessional Learning: Reasons, Judgement, and Action , 2011 .

[31]  D. Guile Interprofessional Activity in the ‘Space of Reasons’: Thinking, Communicating and Acting , 2011 .

[32]  E. Hutchins Enculturating the Supersized Mind , 2011 .

[33]  S. Ludvigsen,et al.  Learning Across Sites : New Tools, Infrastructures and Practices , 2010 .

[34]  David Guile,et al.  The Learning Challenge of the Knowledge Economy , 2010 .

[35]  K. K. Cetina The Epistemics of Information , 2010 .

[36]  Roger Säljö,et al.  Digital tools and challenges to institutional traditions of learning: technologies, social memory and the performative nature of learning , 2010, J. Comput. Assist. Learn..

[37]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[38]  R. Brandom,et al.  Articulating Reasons: An Introduction to Inferentialism , 2002 .

[39]  J. Stevenson The cultural origins of human cognition , 2001 .

[40]  A. Clark,et al.  The Extended Mind , 1998, Analysis.

[41]  Edwin Hutchins,et al.  How a Cockpit Remembers Its Speeds , 1995, Cogn. Sci..

[42]  B. Asher The Professional Vision , 1994 .

[43]  Marx W. Wartofsky,et al.  Models: Representation And The Scientific Understanding , 1979 .

[44]  Robert Liebendorfer Mind, self and society , 1960 .

[45]  D. Monroe Neurosymbolic AI , 2022, Commun. ACM.

[46]  Brenda Nicodemus,et al.  Situated Learning , 2019, Learning and Everyday Life.

[47]  Florian Jaton The Constitution of Algorithms , 2021 .

[48]  Matteo Pasquinelli,et al.  How a Machine Learns and Fails , 2019 .

[49]  Sami Paavola,et al.  Beyond the Distinction between Tool and Sign:: Objects and Artifacts in Human Activity , 2018 .

[50]  Monika Richter,et al.  Cognition In The Wild , 2016 .

[51]  M. Engelmann The Philosophical Investigations , 2013 .

[52]  V. Kaptelinin,et al.  Acting with Technology , 2008 .

[53]  Jonas Ivarsson,et al.  Seeing Through the Screen : Human Reasoning and the Development of Representational Technologies , 2006 .

[54]  Michael Kompf,et al.  We have met technology and it is us , 2005 .

[55]  Andy Clark,et al.  Natural-Born Cyborgs? , 2001, Cognitive Technology.

[56]  O. Tikhomirov,et al.  Perspectives on activity theory: The theory of activity changed by information technology , 1999 .

[57]  Bruno Latour,et al.  Cognition in the Wild (Book) , 1996 .

[58]  M. Cole A cultural-historical approach to distributed cognition , 1993 .