A 4D Counter-Example Showing that DWCness Does Not Imply CWCness in nD
暂无分享,去创建一个
Rocío González-Díaz | Laurent Najman | Nicolas Boutry | Thierry Géraud | T. Géraud | Laurent Najman | R. González-Díaz | Nicolas Boutry | Rocio Gonzalez-Diaz
[1] W. Kropatsch,et al. Well-Composedness in Alexandrov Spaces Implies Digital Well-Composedness in Z n , 2018 .
[2] Laurent Najman,et al. A Tutorial on Well-Composedness , 2018, Journal of Mathematical Imaging and Vision.
[3] Laurent Najman,et al. Well-Composedness in Alexandrov Spaces Implies Digital Well-Composedness in \mathbb Z^n , 2017, DGCI.
[4] Laurent Najman,et al. Well-Composedness in Alexandrov Spaces Implies Digital Well-Composedness in Zn , 2017 .
[5] Nicolas Boutry,et al. A Study of Well-composedness in n-D. (Une étude du bien-composé en dimension n) , 2016 .
[6] Laurent Najman,et al. About the equivalence between AWCness and DWCness , 2016 .
[7] Jacques-Olivier Lachaud,et al. Properties of Gauss Digitized Shapes and Digital Surface Integration , 2016, Journal of Mathematical Imaging and Vision.
[8] Laurent Najman,et al. How to Make nD Functions Digitally Well-Composed in a Self-dual Way , 2015, ISMM.
[9] Laurent Najman,et al. Discrete Set-Valued Continuity and Interpolation , 2013, ISMM.
[10] Laurent Najman,et al. A Quasi-linear Algorithm to Compute the Tree of Shapes of nD Images , 2013, ISMM.
[11] V. Caselles,et al. Geometric Description of Images as Topographic Maps , 2009 .
[12] Jacques-Olivier Lachaud,et al. Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .
[13] 坂上 貴之. 書評 Computational Homology , 2005 .
[14] John M. Lee. Introduction to Topological Manifolds , 2000 .
[15] A. J. Casson,et al. The Hauptvermutung Book , 1996 .
[16] D. Sullivan,et al. The Hauptvermutung book : a collection of papers of the topology of manifolds , 1996 .
[17] Longin Jan Latecki. 3D well-composed pictures , 1995, Optics & Photonics.
[18] Longin Jan Latecki,et al. Well-Composed Sets , 1995, Comput. Vis. Image Underst..