Symplectic encoders for physics-constrained variational dynamics inference

[1]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[2]  E. Chatzi,et al.  Physics-guided Deep Markov Models for Learning Nonlinear Dynamical Systems with Uncertainty , 2021, Mechanical Systems and Signal Processing.

[3]  Satish Nagarajaiah,et al.  Structural identification with physics-informed neural ordinary differential equations , 2021 .

[4]  Siddhartha Mishra,et al.  UnICORNN: A recurrent model for learning very long time dependencies , 2021, ICML.

[5]  H. Delingette,et al.  Quasi-symplectic Langevin Variational Autoencoder , 2020, ArXiv.

[6]  Laurent Girin,et al.  Dynamical Variational Autoencoders: A Comprehensive Review , 2020, Found. Trends Mach. Learn..

[7]  Nicholas Geneva,et al.  Multi-fidelity Generative Deep Learning Turbulent Flows , 2020, Foundations of Data Science.

[8]  Marcus Stoffel,et al.  Artificial neural networks in structural dynamics: A new modular radial basis function approach vs. convolutional and feedforward topologies , 2020, Computer Methods in Applied Mechanics and Engineering.

[9]  Michael I. Jordan,et al.  On dissipative symplectic integration with applications to gradient-based optimization , 2020, Journal of Statistical Mechanics: Theory and Experiment.

[10]  G. Karniadakis,et al.  Physics-informed neural networks for high-speed flows , 2020, Computer Methods in Applied Mechanics and Engineering.

[11]  Yang Liu,et al.  Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures , 2020, Computer Methods in Applied Mechanics and Engineering.

[12]  Ingmar Schuster,et al.  Multi-variate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows , 2020, ICLR.

[13]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[14]  M. Deisenroth,et al.  Variational Integrator Networks for Physically Structured Embeddings , 2019, AISTATS.

[15]  Danilo Jimenez Rezende,et al.  Hamiltonian Generative Networks , 2019, ICLR.

[16]  L. Bottou,et al.  Symplectic Recurrent Neural Networks , 2019, ICLR.

[17]  Yaofeng Desmond Zhong,et al.  Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control , 2019, ICLR.

[18]  David Duvenaud,et al.  Latent ODEs for Irregularly-Sampled Time Series , 2019, ArXiv.

[19]  Costas Papadimitriou,et al.  Input-state-parameter estimation of structural systems from limited output information , 2019, Mechanical Systems and Signal Processing.

[20]  Jason Yosinski,et al.  Hamiltonian Neural Networks , 2019, NeurIPS.

[21]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[22]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[23]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[24]  Arnaud Doucet,et al.  Hamiltonian Variational Auto-Encoder , 2018, NeurIPS.

[25]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[26]  Paris Perdikaris,et al.  Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations , 2017, ArXiv.

[27]  James Hensman,et al.  Identification of Gaussian Process State Space Models , 2017, NIPS.

[28]  Uri Shalit,et al.  Structured Inference Networks for Nonlinear State Space Models , 2016, AAAI.

[29]  Patrick van der Smagt,et al.  Variational Inference with Hamiltonian Monte Carlo , 2016, 1609.08203.

[30]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Uri Shalit,et al.  Deep Kalman Filters , 2015, ArXiv.

[32]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[33]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[34]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[35]  C. Pechmann,et al.  Policy and Research Related to Consumer Rebates: A Comprehensive Review , 2013 .

[36]  Aapo Hyvärinen,et al.  A General Linear Non-Gaussian State-Space Model , 2011, ACML.

[37]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[38]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[39]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[40]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[41]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[42]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[43]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[44]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[45]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[46]  G. Kitagawa,et al.  Linear Gaussian State Space Modeling , 1996 .

[47]  William K. Holstein,et al.  The Mathematical Theory of Optimal Processes , 1965 .