Competition and evolution in virtual plant communities: a new modeling approach

This article presents studies on plants and their communities through experiments with a multi-agent platform of generic virtual plants. Based on Artificial Life concepts, the model has been designed for long-term simulations spanning a large number of generations while emphasizing the most important morphological and physiological aspects of a single plant. The virtual plants combine a physiological transport-resistance model with a morphological model using the L-system formalism and grow in a simplified 3D artificial ecosystem. Experiments at three different scales are carried out and compared to observations on real plant species. At the individual level, single virtual plants are grown in order to examine their responses to environmental constraints. A number of emerging characteristics concerning individual plant growth can be observed. Unifying field observation, mathematical theory and computer simulation, population level experiments on intraspecific and interspecific competition for resources are related to corresponding aggregate models of population dynamics. The latter provide a more general understanding of the experiments with respect to long-term trends and equilibrium conditions. Studies at the evolutionary level aim at morphogenesis and the influence of competition on plant morphology. Among other results, it is shown how the struggle for resources induces an arms race that leads to the evolution of elongated growth in contrast to rather ample forms at ground-level when the plants evolve in isolation.

[1]  Paul C. Struik,et al.  Functional-Structural Plant Modelling in Crop Production , 2007 .

[2]  Marc Ebner,et al.  Coevolution Produces an Arms Race among Virtual Plants , 2002, EuroGP.

[3]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[4]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[5]  Hervé Sinoquet,et al.  A model for simulating structure-function relationships in Walnut tree growth processes , 1997 .

[6]  Gabriela Ochoa,et al.  On Genetic Algorithms and Lindenmayer Systems , 1998, PPSN.

[7]  André Lacointe,et al.  Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models , 2000 .

[8]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns , 1999 .

[9]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[10]  Francis Hallé,et al.  Éloge de la plante : pour une nouvelle biologie , 1999 .

[11]  Radomír Mech,et al.  Visual models of plants interacting with their environment , 1996, SIGGRAPH.

[12]  K. Yoda,et al.  Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants. XI) , 1963 .

[13]  Brendan Lane,et al.  Generating Spatial Distributions for Multilevel Models of Plant Communities , 2002, Graphics Interface.

[14]  George M. Hornberger,et al.  Estimating catchment water quality response to acid deposition using mathematical models of soil ion exchange processes , 1986 .

[15]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[16]  D. Tilman,et al.  Plant Dominance Along an Experimental Nutrient Gradient , 1984 .

[17]  Loïc Pagès,et al.  MassFlowDyn I: A Carbon Transport and Partitioning Model for Root System Architecture , 2000 .

[18]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants , 1980 .

[19]  Loïc Pagès,et al.  An introduction on below-ground environment and resource acquisition, with special reference on trees. Simulation models should include plant structure and function , 2000 .

[20]  K. Niklas Computer-simulated plant evolution , 1986 .

[21]  Jerome K. Vanclay,et al.  Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests , 1994 .

[22]  Kenrick Mock Wildwood: the evolution of L-system plants for virtual environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[24]  Jari Perttunen,et al.  Application of the Functional-Structural Tree Model LIGNUM to Sugar Maple Saplings (Acer saccharum Marsh) Growing in Forest Gaps , 2001 .

[25]  N. Pierce Origin of Species , 1914, Nature.

[26]  J. H. M. Thornley,et al.  A Model to Describe the Partitioning of Photosynthate during Vegetative Plant Growth , 1972 .

[27]  S. Filleur,et al.  Nitrate and glutamate sensing by plant roots. , 2005, Biochemical Society transactions.

[28]  Frederick R. Adler,et al.  Limitation of plant water use by rhizosphere and xylem conductance: results from a model , 1998 .

[29]  Marc Jaeger,et al.  Plant models faithful to botanical structure and development , 1988, SIGGRAPH.

[30]  R. L. Davidson Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grasses and Clover , 1969 .

[31]  Bruce Damer,et al.  Nerve Garden: A Public Terrarium in Cyberspace , 1998, Virtual Worlds.

[32]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[33]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  R. Dawkins The Blind Watchmaker , 1986 .

[35]  Przemyslaw Prusinkiewicz,et al.  Lindenmayer Systems, Fractals, and Plants , 1989, Lecture Notes in Biomathematics.

[36]  H. Honda Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the sample of the tree-like body. , 1971, Journal of theoretical biology.

[37]  Harri Hakula,et al.  Components of functional-structural tree models , 2000 .

[38]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[39]  T. Kira,et al.  A QUANTITATIVE ANALYSIS OF PLANT FORM-THE PIPE MODEL THEORY : I.BASIC ANALYSES , 1964 .

[40]  J. Thornley A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants , 1972 .

[41]  C. Jacob Evolving evolution programs: genetic programming and L-systems , 1996 .

[42]  Y. L. Grossman,et al.  PEACH: A simulation model of reproductive and vegetative growth in peach trees. , 1994, Tree physiology.

[43]  Godin,et al.  A multiscale model of plant topological structures , 1998, Journal of theoretical biology.

[44]  J. Gee,et al.  Ecology (3rd edn) , 1991 .

[45]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[46]  P. Prusinkiewicz,et al.  Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists , 1996 .

[47]  Radomír Mech,et al.  Visual Models of Plant Development , 1997, Handbook of Formal Languages.

[48]  Stefan Bornhofen,et al.  Evolution of Virtual Plants Interacting with their Environment , 2007 .

[49]  Robert A. Goldstein,et al.  The ILWAS model: Formulation and application , 1985, Water, Air, and Soil Pollution.

[50]  R. Hunt,et al.  A self‐assembling model of resource dynamics and plant growth incorporating plant functional types , 2001 .

[51]  Gabriella Kókai,et al.  Modelling Blood Vessels of the Eye with Parametric L-Systems Using Evolutionary Algorithms , 1999, AIMDM.

[52]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[53]  J. Thornley,et al.  Modelling Shoot:Root Relations: the Only Way Forward? , 1998 .

[54]  Christophe Godin,et al.  Representing and encoding plant architecture: A review , 2000 .

[55]  Karl Sims,et al.  Artificial evolution for computer graphics , 1991, SIGGRAPH.

[56]  Jari Perttunen,et al.  LIGNUM: a model combining the structure and the functioning of trees , 1998 .

[57]  Raymond Pearl,et al.  On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[59]  Christophe Godin,et al.  Functional-structural plant modelling. , 2005, The New phytologist.

[60]  Christian Jacob,et al.  Genetic L-System Programming , 1994, PPSN.

[61]  Stefan Bornhofen,et al.  On hopeful monsters, neutral networks and junk code in evolving L-systems , 2008, GECCO '08.

[62]  P. Prusinkiewicz,et al.  Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. , 2005, The New phytologist.

[63]  R. Hunt,et al.  Resource dynamics and plant growth: a self‐assembling model for individuals, populations and communities , 1997 .

[64]  Steven F. Railsback,et al.  Individual-based modeling and ecology , 2005 .

[65]  Alan A. Berryman,et al.  Population: a central concept for ecology? , 2002 .

[66]  Jari Perttunen,et al.  Adaptation of the LIGNUM model for simulations of growth and light response in Jack pine , 2001 .

[67]  S. Gower,et al.  Applications of physiological ecology to forest management , 1996 .

[68]  L W Buss,et al.  Modern zoophytology: the growth and form of modular organisms. , 1987, Science.

[69]  Christian Jacob,et al.  Evolution Programs Evolved , 1996, PPSN.

[70]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[71]  Changhui Peng,et al.  Growth and yield models for uneven-aged stands: past, present and future , 2000 .

[72]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[73]  Przemyslaw Prusinkiewicz,et al.  The concept and design of a virtual laboratory , 1990 .

[74]  B. Andrieu,et al.  Modelling the light environment of virtual crop canopies , 2007 .

[75]  H. M. Rauscher,et al.  ECOPHYS: An ecophysiological growth process model for juvenile poplar. , 1990, Tree physiology.

[76]  L. Firbank,et al.  A model of interference within plant monocultures , 1985 .

[77]  Stefan Bornhofen,et al.  Life History Evolution of Virtual Plants: Trading Off Between Growth and Reproduction , 2006, PPSN.

[78]  Loïc Pagès,et al.  A carbon balance model of peach tree growth and development for studying the pruning response. , 1998, Tree physiology.

[79]  Amal El Fallah-Seghrouchni,et al.  Les systèmes multi-agents , 2006 .

[80]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926 .

[81]  Gerard L'E. Turner,et al.  The Government and the English Optical Glass Industry, 1650-1850 , 2000 .

[82]  E. Münch,et al.  Die stoffbewegungen in der Pflanze , 1931, Nature.

[83]  Radomír Mech,et al.  Realistic modeling and rendering of plant ecosystems , 1998, SIGGRAPH.

[84]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[85]  Jari Perttunen,et al.  LIGNUM: A Tree Model Based on Simple Structural Units , 1996 .

[86]  Przemyslaw Prusinkiewicz,et al.  Modeling of spatial structure and development of plants: a review , 1998 .

[87]  Gabriela Ochoa,et al.  Evolving L-Systems to Capture Protein Structure Native Conformations , 2005, EuroGP.

[88]  P. Verhulst Notice sur la loi que la population pursuit dans son accroissement , 1838 .

[89]  R. Pearl,et al.  On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Winfried Kurth,et al.  MORPHOLOGICAL MODELS OF PLANT GROWTH : POSSIBILITIES AND ECOLOGICAL RELEVANCE , 1994 .

[91]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[92]  G. F. Gause The struggle for existence , 1971 .

[93]  Jacob Weiner,et al.  Mechanisms determining the degree of size asymmetry in competition among plants , 1998, Oecologia.

[94]  Marc Ebner,et al.  Evoluiton and Growth of Virtual Plants , 2003, ECAL.

[95]  Jari Perttunen,et al.  Evaluation of importance of sapwood senescence on tree growth using the model lignum , 1997 .

[96]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[97]  Stefan Bornhofen,et al.  Evolutionary Design of Virtual Plants , 2006, CGVR.

[98]  Martin Mortimer,et al.  Dynamics of weed populations , 1995 .

[99]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[100]  Abraham J. Escobar-Gutiérrez,et al.  Carbon-based models of individual tree growth: A critical appraisal , 2001 .

[101]  Robert F. Norris Weed Ecology: Implications for Management.—Steven Radosevich, Jodie Holt, and Claudio Ghersa, 1997, 2nd ed, Wiley and Sons, New York, New York, 589 p., illustrations, indexed. ISBN 0-471-11606-8 (hardcover) $89.95. , 1998 .

[102]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[103]  Massimo Pigliucci,et al.  Phenotypic Plasticity: Beyond Nature and Nurture , 2001 .

[104]  Oliver Deussen,et al.  Modeling and Visualization of symmetric and asymmetric plant competition , 2005, NPH.

[105]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[106]  Claude Lattaud,et al.  Plant growth simulation in virtual worlds : towards online artificial ecosystems , 1999 .

[107]  S. Stearns,et al.  The Evolution of Life Histories , 1992 .

[108]  Oliver Deussen,et al.  Efficient simulation of vegetation using light and nutrition competition , 2006, SimVis.

[109]  F. Houllier,et al.  A transport model for tree ring width. , 1997 .