An Infeasible Mizuno–Todd–Ye Type Algorithm for Convex Quadratic Programming with Polynomial Complexity

Infeasible interior point methods have been very popular and effective. In this paper, we propose a predictor–corrector infeasible interior point algorithm for convex quadratic programming, and we prove its convergence and analyze its complexity. The algorithm has the polynomial numerical complexity with O(nL)-iteration.

[1]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[2]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[3]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[4]  Yinyu Ye,et al.  An extension of Karmarkar's projective algorithm for convex quadratic programming , 1989, Math. Program..

[5]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[6]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[7]  Donald Goldfarb,et al.  An O(n3L) primal interior point algorithm for convex quadratic programming , 1991, Math. Program..

[8]  Jeffrey C. Lagarias,et al.  Karmarkar's linear programming algorithm and Newton's method , 1991, Math. Program..

[9]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[10]  Jie Sun,et al.  A convergence proof for an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions , 1993, Math. Program..

[11]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[12]  Sanjay Mehrotra,et al.  Predictor-corrector Methods for a Class of Linear Complementarity Problems , 1994, SIAM J. Optim..

[13]  P. TsengyJune Simpliied Analysis of an O(nl)-iteration Infeasible Predictor-corrector Path-following Method for Monotone Lcp , 1994 .

[14]  SIMPLIFIED ANALYSIS OF AN O(nL)-ITERATION INFEASIBLE PREDICTOR-CORRECTOR PATH-FOLLOWING METHOD FOR MONOTONE LINEAR COMPLEMENTARITY PROBLEMS , 1995 .

[15]  Shinji Mizuno,et al.  Infeasible-Interior-Point Primal-Dual Potential-Reduction Algorithms for Linear Programming , 1995, SIAM J. Optim..

[16]  Florian A. Potra,et al.  Predictor-corrector algorithm for solvingP*(κ)-matrix LCP from arbitrary positive starting points , 1996, Math. Program..

[17]  Florian A. Potra,et al.  AnO(nL) infeasible-interior-point algorithm for LCP with quadratic convergence , 1996, Ann. Oper. Res..

[18]  Jianming Miao Two Infeasible Interior-Point Predictor-Corrector Algorithms for Linear Programming , 1996, SIAM J. Optim..

[19]  Florian A. Potra,et al.  A Quadratically Convergent Infeasible-Interior-Point Algorithm for LCP with Polynomial Complexity , 1997, SIAM J. Optim..

[20]  Florian A. Potra,et al.  A Large-Step Infeasible-Interior-Point Method for the P*-Matrix LCP , 1997, SIAM J. Optim..

[21]  F. Potra,et al.  Superlinearly Convergent Infeasible-Interior-Point Algorithm for Degenerate LCP , 1998 .

[22]  Florian A. Potra,et al.  A path following method for LCP withsuperlinearly convergent iteration sequence , 1998, Ann. Oper. Res..

[23]  Masakazu Kojima,et al.  Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..

[24]  F. Potra,et al.  On a general class of interior-point algorithms for semidefinite programming with polynomial complexity and superlinear convergence , 1999 .

[25]  An Infeasible Interior Point Algorithm for Convex Quadratic Programming Based on Algebraic Transformation , 2007 .