Implementation of binary floating-point arithmetic on embedded integer processors - Polynomial evaluation-based algorithms and certified code generation
暂无分享,去创建一个
[1] Michael J. Flynn,et al. Fast IEEE Rounding for Division by Functional Iteration , 1996 .
[2] Claude-Pierre Jeannerod,et al. Computing Floating-Point Square Roots via Bivariate Polynomial Evaluation , 2011, IEEE Transactions on Computers.
[3] S. Chevillard,et al. A Certified Infinite Norm for the Implementation of Elementary Functions , 2007 .
[4] Ramesh C. Agarwal,et al. Series approximation methods for divide and square root in the Power3/sup TM/ processor , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[5] Javier D. Bruguera,et al. High-Speed Double-Precision Computation of Reciprocal, Division, Square Root and Inverse Square Root , 2002, IEEE Trans. Computers.
[6] Juan Manuel Peña,et al. On the Multivariate Horner Scheme II: Running Error Analysis , 2000, Computing.
[7] Jean-Michel Muller,et al. Elementary Functions: Algorithms and Implementation , 1997 .
[8] Jean-Michel Muller,et al. Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .
[9] G. Stewart. Afternotes goes to graduate school : lectures on advanced numerical analysis : a series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact , 1998 .
[10] Milos D. Ercegovac,et al. Improving Goldschmidt Division, Square Root, and Square Root Reciprocal , 2000, IEEE Trans. Computers.
[11] Sylvie Boldo,et al. A Simple Test Qualifying the Accuracy of Horner'S Rule for Polynomials , 2004, Numerical Algorithms.
[12] Michael J. Flynn,et al. Design Issues in Division and Other Floating-Point Operations , 1997, IEEE Trans. Computers.
[13] J. Muller,et al. CR-LIBM A library of correctly rounded elementary functions in double-precision , 2006 .
[14] M. Ercegovac,et al. Division and Square Root: Digit-Recurrence Algorithms and Implementations , 1994 .
[15] Vladik Kreinovich,et al. Greedy algorithms for optimizing multivariate Horner schemes , 2004, SIGS.
[16] Claude-Pierre Jeannerod,et al. A New Binary Floating-Point Division Algorithm and Its Software Implementation on the ST231 Processor , 2009, 2009 19th IEEE Symposium on Computer Arithmetic.
[17] bob. norin. IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic , 1999 .
[18] David W. Matula,et al. On infinitely precise rounding for division, square root, reciprocal and square root reciprocal , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[19] Donald E. Knuth,et al. Evaluation of polynomials by computer , 1962, Commun. ACM.
[20] Marco Mezzalama,et al. Survey of Square Rooting Algorithms , 1990 .
[21] Paul Zimmermann. Implementation of the reciprocal square root in MPFR , 2008, Numerical Validation in Current Hardware Architectures.
[22] Stuart F. Oberman,et al. Floating point division and square root algorithms and implementation in the AMD-K7/sup TM/ microprocessor , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[23] Ronald L. Graham,et al. Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.
[24] Javier D. Bruguera,et al. A Radix-2 Digit-by-Digit Architecture for Cube Root , 2008, IEEE Transactions on Computers.
[25] C. T. Fike. Methods of evaluating polynomial approximations in function evaluation routines , 1967, CACM.
[26] Paolo Faraboschi,et al. Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools , 2004 .
[27] Michael J. Schulte,et al. High-speed inverse square roots , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[28] Fabrice Rouillier,et al. Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library , 2005, Reliab. Comput..
[29] Tomás Lang,et al. Digit-Serial Arithmetic , 2004 .
[30] L. Trefethen,et al. Barycentric-Remez algorithms for best polynomial approximation in the chebfun system , 2009 .
[31] V. Pan. METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .
[32] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[33] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[34] Christoph Quirin Lauter. Arrondi correct de fonctions mathématiques : fonctions univariées et bivariées, certification et automatisation , 2008 .
[35] Bogdan Pasca,et al. Racines carrées multiplicatives sur FPGA , 2009 .
[36] Guillaume Revy. Analyse et implantation d'algorithmes rapides pour l'évaluation polynomiale sur les nombres flottants , 2006 .
[37] Claude-Pierre Jeannerod,et al. Optimizing correctly-rounded reciprocal square roots for embedded VLIW cores , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.
[38] Peter W. Markstein. Computation of Elementary Functions on the IBM RISC System/6000 Processors , 1990, IBM J. Res. Dev..
[39] Qian Ren. Optimizing behavioral transformations using Taylor Expansion Diagrams , 2008 .
[40] P. Faraboschi,et al. Lx: a technology platform for customizable VLIW embedded processing , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).
[41] Wayne Luk,et al. Automating custom-precision function evaluation for embedded processors , 2005, CASES '05.
[42] Claude-Pierre Jeannerod,et al. Faster floating-point square root for integer processors , 2007, 2007 International Symposium on Industrial Embedded Systems.
[43] Christoph Quirin Lauter,et al. Certified and Fast Computation of Supremum Norms of Approximation Errors , 2009, 2009 19th IEEE Symposium on Computer Arithmetic.
[44] Dong-U Lee,et al. Optimized Custom Precision Function Evaluation for Embedded Processors , 2009, IEEE Transactions on Computers.
[45] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[46] Michael J. Flynn,et al. Division Algorithms and Implementations , 1997, IEEE Trans. Computers.
[47] Larry J. Stockmeyer,et al. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..
[48] Peter W. Markstein,et al. Software Division and Square Root Using Goldschmidt's Algorithms , 2004 .
[49] John Harrison,et al. Scientific Computing on the Itanium ™ Processor , 2001, ACM/IEEE SC 2001 Conference (SC'01).
[50] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[51] Emmanuel Lazard. Architecture de l'ordinateur , 2006 .
[52] Matthieu Martel. Enhancing the implementation of mathematical formulas for fixed-point and floating-point arithmetics , 2009, Formal Methods Syst. Des..
[53] Javier D. Bruguera,et al. Analysis of the impact of different methods for division/square root computation in the performance of a superscalar microprocessor , 2003, J. Syst. Archit..
[54] David A. Patterson,et al. Computer Architecture: A Quantitative Approach , 1969 .
[55] J. Eve. The evaluation of polynomials , 1964 .
[56] Richard G. Lyons. Function Approximation Using Polynomials , 2007 .
[57] Sylvie Boldo,et al. Preuves formelles en arithmétiques à virgule flottante , 2004 .
[58] Arnaud Tisserand,et al. A floating-point library for integer processors , 2004, SPIE Optics + Photonics.
[59] Sylvain Chevillard,et al. Évaluation efficace de fonctions numériques - Outils et exemples. (Efficient evaluation of numerical functions - Tools and examples) , 2009 .
[60] Guillaume Melquiond,et al. De l'arithmétique d'intervalles à la certification de programmes. (From interval arithmetic to program verification) , 2006 .