Fuzzy implications defined on the set of discrete fuzzy numbers

Given an implication function I defined on the finite chain L = {0,...,n}, a method for extending I to the set of discrete fuzzy numbers whose support is a set of consecutive natural numbers contained in L (denoted by A L ) is given. The resulting extension is in fact a fuzzy implication on A L preserving some boundary properties. Moreover, if the initial implication I is an S, QL or D-implication on L then its extension is also an S, QL or D-implication on A L , respectively.

[1]  Jaume Casasnovas,et al.  Weighted Means of Subjective Evaluations , 2012, Soft Computing in Humanities and Social Sciences.

[2]  Joan Torrens,et al.  t-Operators and uninorms on a finite totally ordered set , 1999, Int. J. Intell. Syst..

[3]  Bernard De Baets,et al.  Model implicators and their characterization , 1995 .

[4]  Jaume Casasnovas,et al.  Maximum and Minimum of Discrete Fuzzy Numbers , 2007, CCIA.

[5]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[6]  Joan Torrens,et al.  S-implications and R-implications on a finite chain , 2004, Kybernetika.

[7]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[8]  Jaume Casasnovas,et al.  Discrete Fuzzy Numbers Defined on a Subset of Natural Numbers , 2007, IFSA.

[9]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[10]  Jaume Casasnovas,et al.  S-implications in the set of discrete fuzzy numbers , 2010, International Conference on Fuzzy Systems.

[11]  Jaume Casasnovas,et al.  Extension of discrete t-norms and t-conorms to discrete fuzzy numbers , 2011, Fuzzy Sets Syst..

[12]  William Voxman,et al.  Canonical representations of discrete fuzzy numbers , 2001, Fuzzy Sets Syst..

[13]  Radko Mesiar,et al.  Weighted ordinal means , 2007, Inf. Sci..

[14]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[15]  Jaume Casasnovas,et al.  On the addition of discrete fuzzy numbers , 2006 .

[16]  Jaume Casasnovas,et al.  Lattice Properties of Discrete Fuzzy Numbers under Extended Min and Max , 2009, IFSA/EUSFLAT Conf..