Entanglement versus Bell nonlocality of quantum nonequilibrium steady states

We study the entanglement and the Bell nonlocality of a coupled two-qubit system, in which each qubit is coupled with one individual environment. We study how the nonequilibrium environments (with different temperatures or chemical potentials) influence the entanglement and the Bell nonlocality. Dependent on the inter-qubit coupling strength (relatively weak or strong compared to local qubits' frequencies) or the environmental nature (bosonic or fermionic), the two-qubit steady state can have strong correlations and violate the Bell inequalities with two or three measurements per party. Equilibrium environments compared to the nonequilibrium environments (with fixed mean temperatures or chemical potentials) do not give the maximal entanglement or the maximal violation of Bell inequalities if the two qubits are not identical, such as the two qubits having an energy detuning or coupling to the environment with unbalanced weights. The nonequilibrium conditions (characterized by the temperature differences) which give the maximal violation of Bell inequalities are different from the nonequilibrium conditions which give the maximal entanglement. The entanglement and the Bell nonlocality have different responses to the nonequilibrium environments. The spatial asymmetric two-qubit system coupled with nonequilibrium bosonic environments shows the thermal rectification effect, which can be witnessed by the Bell nonlocality. Our study demonstrates that the nonequilibrium environments are both valuable for the entanglement and Bell nonlocality resources, based on different optimal nonequilibrium conditions though.

[1]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[2]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[3]  Entanglement induced by a single-mode heat environment , 2001, quant-ph/0109052.

[4]  Xiaoguang Wang Entanglement in the quantum Heisenberg XY model , 2001 .

[5]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[6]  Stefano Pironio,et al.  Randomness versus nonlocality and entanglement. , 2011, Physical review letters.

[7]  Yong-Su Kim,et al.  Nonlocal quantum correlations under amplitude damping decoherence , 2019, Physical Review A.

[8]  M. Żukowski,et al.  Bell's theorem for general N-qubit states. , 2001, Physical review letters.

[9]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[10]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[11]  F. Benatti,et al.  Entangling two unequal atoms through a common bath , 2009, 0912.0354.

[12]  J. Batle,et al.  Nonlocality and entanglement in qubit systems , 2011, 1102.4653.

[13]  S. Tarucha,et al.  Microwave spectroscopy of a quantum-dot molecule , 1998, Nature.

[14]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[15]  P. Hänggi,et al.  Nonequilibrium density-matrix description of steady-state quantum transport. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Karl Joulain,et al.  Quantum Thermal Transistor. , 2016, Physical review letters.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[19]  Effects of anisotropy on thermal entanglement , 2001, quant-ph/0102072.

[20]  F. Bloch,et al.  Generalized Theory of Relaxation , 1957 .

[21]  Zhedong Zhang,et al.  Excitation-energy transfer under strong laser drive , 2021 .

[22]  Jerzy Dajka,et al.  Non-Markovian entanglement evolution of two uncoupled qubits , 2008 .

[23]  G. Kurizki,et al.  Scalable solid-state quantum processor using subradiant two-atom states. , 2002, Physical review letters.

[24]  A. Starace,et al.  Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. , 2002, Physical review letters.

[25]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[26]  Miguel Navascués,et al.  Activation of nonlocal quantum resources. , 2011, Physical review letters.

[27]  Frank Verstraete,et al.  Entanglement versus bell violations and their behavior under local filtering operations. , 2002, Physical review letters.

[28]  Pérès,et al.  Collective tests for quantum nonlocality. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[29]  Lian-Ao Wu,et al.  Quantum effects in thermal conduction: Nonequilibrium quantum discord and entanglement , 2011, 1105.1206.

[30]  Zhaofeng Su,et al.  Entanglement as upper bound for the nonlocality of a general two-qubit system , 2020, 2004.08337.

[31]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[32]  Thomas Vidick,et al.  More nonlocality with less entanglement , 2010, 1011.5206.

[33]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[34]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[35]  X. Yi,et al.  Nonequilibrium thermal entanglement in a three-qubit XX model , 2009, 0908.0592.

[36]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[37]  T. Pullerits,et al.  Classification of dark states in multilevel dissipative systems , 2018, Physical Review A.

[38]  All bipartite entangled States display some hidden nonlocality. , 2007, Physical review letters.

[39]  S. Massar,et al.  Device-independent state estimation based on Bell’s inequalities , 2009, 0907.2170.

[40]  S. Olivares,et al.  Continuous-variable-entanglement dynamics in structured reservoirs , 2009, 0910.2342.

[41]  C. P. Sun,et al.  Steady quantum coherence in non-equilibrium environment , 2014, 1407.4290.

[42]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[43]  Hang Zheng,et al.  Non-Markovian disentanglement dynamics of a two-qubit system , 2007, 0709.3229.

[44]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[45]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[46]  Adam Miranowicz Violation of Bell inequality and entanglement of decaying Werner states , 2004 .

[47]  G. Compagno,et al.  Connection among entanglement, mixedness, and nonlocality in a dynamical context , 2010, 1003.5153.

[48]  Nicolas Gisin,et al.  Entanglement and non-locality are different resources , 2004, quant-ph/0412109.

[49]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[50]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.

[51]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[52]  Jin Wang,et al.  Coherence enhanced quantum metrology in a nonequilibrium optical molecule , 2017, 1709.03088.

[53]  Yeong-Cherng Liang,et al.  Bounds on quantum correlations in Bell-inequality experiments , 2006, quant-ph/0608128.

[54]  Nicolas Gisin,et al.  Optimal bell tests do not require maximally entangled states. , 2005, Physical review letters.

[55]  M. Znidaric Entanglement in stationary nonequilibrium states at high energies , 2011, 1112.4415.

[56]  R. M. Angelo,et al.  Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths and births , 2013, 1311.5702.

[57]  L. Kuang,et al.  Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations , 2010, 1007.4296.

[58]  Xiang-Ping Liao,et al.  Coherence-controlled entanglement and nonlocality of two qubits interacting with a thermal reservoir , 2007 .

[59]  B. Bellomo,et al.  Nonequilibrium dissipation-driven steady many-body entanglement , 2014, 1409.7178.

[60]  L. Jakóbczyk,et al.  Clauser-Horne-Shimony-Holt violation and the entropy-concurrence plane , 2005 .

[61]  Baowen Li,et al.  Energy transfer in the nonequilibrium spin-boson model: From weak to strong coupling. , 2016, Physical review. E.

[62]  Marcus Huber,et al.  Autonomous quantum thermal machine for generating steady-state entanglement , 2015, 1504.00187.

[63]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[64]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[65]  Armin Tavakoli,et al.  Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths , 2017, Quantum.

[66]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[67]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[68]  A. Korotkov,et al.  Bell-inequality violation versus entanglement in the presence of local decoherence , 2008, 0802.2132.

[69]  Xuanhua Wang,et al.  Nonequilibrium effects on quantum correlations: Discord, mutual information, and entanglement of a two-fermionic system in bosonic and fermionic environments , 2019, Physical Review A.

[70]  Wei Wu,et al.  Steady-state entanglement and coherence of two coupled qubits in equilibrium and nonequilibrium environments , 2018, Physical Review A.

[71]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[72]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[73]  F. Tacchino,et al.  Steady State Entanglement beyond Thermal Limits. , 2017, Physical review letters.

[74]  S. Bose,et al.  Natural thermal and magnetic entanglement in the 1D Heisenberg model. , 2000, Physical review letters.

[75]  Ting Yu,et al.  Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach , 2011, 1109.1239.

[76]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[77]  Spin-boson thermal rectifier. , 2004, Physical review letters.

[78]  I. Mirza,et al.  Controlling tripartite entanglement among optical cavities by reservoir engineering , 2015, 1503.06930.

[79]  Francesco Petruccione,et al.  Dynamics of nonequilibrium thermal entanglement , 2008, Physical Review A.

[80]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[81]  Mohammad Kazem Tavassoly,et al.  Dynamics and protection of entanglement in n-qubit systems within Markovian and non-Markovian environments , 2016 .

[82]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[83]  J. Latorre,et al.  Quantum nonlocality in two three-level systems , 2001, quant-ph/0111143.

[84]  L. Jakóbczyk,et al.  Entanglement and nonlocality versus spontaneous emission in two-atom systems , 2003, quant-ph/0308126.

[85]  Mauro Antezza,et al.  Steady entanglement out of thermal equilibrium , 2013, 1304.2864.

[86]  Tamás Vértesi,et al.  Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems , 2010 .

[87]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[88]  Shang-bin Li,et al.  Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity , 2005 .

[89]  R. Aguado,et al.  Nonequilibrium entanglement and noise in coupled qubits , 2006, cond-mat/0602063.

[90]  Luis Quiroga,et al.  Nonequilibrium thermal entanglement , 2007 .

[91]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[92]  Nicolas Brunner,et al.  Semi-device-independent bounds on entanglement , 2010, 1012.1513.

[93]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.