Resistive gas sensors based on metal-oxide nanowires

Gas sensors are indispensable for detecting harmful gases in the environment. The morphology of a gas sensor significantly affects its sensing performance. Among the various morphologies, one-dimensional nanowires (NWs) have numerous advantages, such as high surface area, small dimensions, high charge-carrier concentrations, facile synthesis, high crystallinity, and stability. These excellent properties make NWs promising for gas sensing. Resistive-type metal oxide-based gas sensors are widely used for monitoring various toxic gases and volatile organic compounds. In this tutorial, the synthesis of metal oxide NWs, the fabrication of gas sensors, and their sensing mechanisms are discussed. Different types of NW-based gas sensors, such as single NWs, branched NWs, noble metal-functionalized NWs, heterojunction NWs, self-heating NWs, ultraviolet-activated NWs, core–shell NWs, and electronic-nose-based NWs, are comprehensively presented. Finally, we discuss future directions with regard to the improvement and potential of these NW gas sensors. This tutorial aims to provide an overview of the fundamental principle and state-of-the-art technology, which is useful for researchers and students working in the field of resistive-type NW-based gas sensors.

[1]  M. Bechelany,et al.  On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity , 2019, Nanomaterials.

[2]  Myung Sik Choi,et al.  Incorporation of Pt Nanoparticles on the Surface of TeO₂-Branched Porous Si Nanowire Structures for Enhanced Room-Temperature Gas Sensing. , 2019, Journal of Nanoscience and Nanotechnology.

[3]  S. Akbar,et al.  Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review , 2019, Sensors and Actuators B: Chemical.

[4]  Anton Köck,et al.  Response modeling of single SnO2 nanowire gas sensors , 2019, Sensors and Actuators B: Chemical.

[5]  Trinh Minh Ngoc,et al.  Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing. , 2019, Analytica chimica acta.

[6]  F. Liu,et al.  Fabrication of 1D Zn2SnO4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors , 2019, Sensors and Actuators B: Chemical.

[7]  Rishi Maiti,et al.  Conductometric Sensing with Individual InAs Nanowires , 2019, Sensors.

[8]  J. Ajayan,et al.  A review of micromachined sensors for automotive applications , 2019, Measurement.

[9]  Tao Wang,et al.  Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection , 2019, Sensors and Actuators B: Chemical.

[10]  B. Wang,et al.  Pt-decorated hierarchical SiC nanofibers constructed by intertwined SiC nanorods for high-temperature ammonia gas sensing , 2019, Journal of Materials Chemistry C.

[11]  Jun Wang,et al.  Designed synthesis of Ag-functionalized Ni-doped In2O3 nanorods with enhanced formaldehyde gas sensing properties , 2019, Journal of Materials Chemistry C.

[12]  Kang Wang,et al.  1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity , 2019, Applied Surface Science.

[13]  Xiaojun Bao,et al.  Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space , 2019, Neuron.

[14]  Liang Xu,et al.  Synthesis of 1D α-MoO3/0D ZnO heterostructure nanobelts with enhanced gas sensing properties , 2019, Journal of Alloys and Compounds.

[15]  Shahruz Nasirian,et al.  Carbon monoxide gas sensing features of zinc oxide nanoneedles: practical selectivity and long-term stability , 2019, Journal of Materials Science: Materials in Electronics.

[16]  Wenhua Liu,et al.  Synthesis and gas-sensing properties of ZnO@NiCo2O4 core@shell nanofibers , 2019, Materials Research Bulletin.

[17]  Dhanjai,et al.  Core@shell nanomaterials based sensing devices: A review , 2019, TrAC Trends in Analytical Chemistry.

[18]  Rafiq Ahmad,et al.  Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. , 2019, Advances in colloid and interface science.

[19]  S. Akbar,et al.  Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review , 2019, Sensors and Actuators B: Chemical.

[20]  Ahmad Baroutaji,et al.  Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors , 2019, Renewable and Sustainable Energy Reviews.

[21]  Ali Mirzaei,et al.  Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview , 2019, Applied Sciences.

[22]  Minghui Yang,et al.  Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing , 2019, Journal of Alloys and Compounds.

[23]  Y. Li,et al.  Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures , 2019, Journal of Alloys and Compounds.

[24]  C. Linster,et al.  Noradrenergic effects on olfactory perception and learning , 2019, Brain Research.

[25]  Jae-Hun Kim,et al.  Improving the hydrogen sensing properties of SnO2 nanowire-based conductometric sensors by Pd-decoration , 2019, Sensors and Actuators B: Chemical.

[26]  S. Ray,et al.  Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods , 2019, Sensors and Actuators B: Chemical.

[27]  Bo Zhang,et al.  Metal Oxide Nanoarrays for Chemical Sensing: A Review of Fabrication Methods, Sensing Modes, and Their Inter-correlations , 2019, Front. Mater..

[28]  I. Iatsunskyi,et al.  Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires , 2019, Journal of Materials Chemistry A.

[29]  Jeongseok Lee,et al.  Improved Sensitivity of α-Fe2O3 Nanoparticle-Decorated ZnO Nanowire Gas Sensor for CO , 2019, Sensors.

[30]  Xiaohong Li,et al.  Ultrathin nanowire based on icosahedral W@Au12 and application as NO gas sensor , 2019, Journal of Physics and Chemistry of Solids.

[31]  G. Zhu,et al.  ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing , 2019, Sensors and Actuators B: Chemical.

[32]  Liuming Yan,et al.  Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone , 2019, Sensors and Actuators B: Chemical.

[33]  Xian-fa Zhang,et al.  Enhanced Gas-Sensing Properties for Trimethylamine at Low Temperature Based on MoO3/Bi2Mo3O12 Hollow Microspheres. , 2019, ACS applied materials & interfaces.

[34]  Nguyen Duc Hoa,et al.  Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide , 2019, Sensors and Actuators B: Chemical.

[35]  P. Lugli,et al.  Time stability of carbon nanotube gas sensors , 2019, Measurement.

[36]  Shuai Chen,et al.  Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors , 2019, Sensors and Actuators B: Chemical.

[37]  Jae-Hun Kim,et al.  Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires , 2019, Sensors and Actuators B: Chemical.

[38]  S. Navale,et al.  Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors , 2019, Ceramics International.

[39]  P. Hao,et al.  A simple gas sensor based on zinc ferrite hollow spheres: Highly sensitivity, excellent selectivity and long-term stability , 2019, Sensors and Actuators B: Chemical.

[40]  G. Lu,et al.  Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. , 2019, Journal of colloid and interface science.

[41]  Y. Choa,et al.  Gas Sensors: High-Performance, Transparent Thin Film Hydrogen Gas Sensor Using 2D Electron Gas at Interface of Oxide Thin Film Heterostructure Grown by Atomic Layer Deposition (Adv. Funct. Mater. 7/2019) , 2019, Advanced Functional Materials.

[42]  S. Bhattacharya,et al.  α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature , 2019, Applied Surface Science.

[43]  Y. Deng,et al.  Semiconducting Metal Oxides for Gas Sensing , 2019 .

[44]  C. Simonsen,et al.  Carbon monoxide poisoning in Denmark with focus on mortality and factors contributing to mortality , 2019, PloS one.

[45]  Hong Chen,et al.  Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation , 2019, Journal of Cleaner Production.

[46]  T. Schmidt,et al.  An overview of approaches in liquid chromatography flame ionization detection , 2019, TrAC Trends in Analytical Chemistry.

[47]  A. Wisitsoraat,et al.  Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures , 2019, Sensors and Actuators B: Chemical.

[48]  Qi Yu,et al.  Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review , 2018, Critical reviews in analytical chemistry.

[49]  Myung Sik Choi,et al.  Synthesis, Characterization and Gas-Sensing Properties of Pristine and SnS2 Functionalized TeO2 Nanowires , 2018, Metals and Materials International.

[50]  Tong Zhang,et al.  An overview: Facet-dependent metal oxide semiconductor gas sensors , 2018, Sensors and Actuators B: Chemical.

[51]  Elisabetta Comini,et al.  "Metal oxide -based heterostructures for gas sensors"- A review. , 2018, Analytica chimica acta.

[52]  K. Kok,et al.  A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: Dual sensing mode of hydrogen gas detection , 2018, Chemical Physics Letters.

[53]  M. Bäumer,et al.  Catalytic Micro Gas Sensor with Excellent Homogeneous Temperature Distribution and Low Power Consumption for Long-Term Stable Operation , 2018, Proceedings.

[54]  Dongyuan Zhao,et al.  Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing , 2018, Advanced Materials Interfaces.

[55]  J. Phillips,et al.  Carbon Monoxide Poisoning , 2018, Workplace Health & Safety.

[56]  Myung Sik Choi,et al.  Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires , 2018, Sensors and Actuators B: Chemical.

[57]  B. Parvitte,et al.  Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis. , 2018, Food chemistry.

[58]  Il-Doo Kim,et al.  Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensors. , 2018, ACS sensors.

[59]  I. Iatsunskyi,et al.  High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes. , 2018, ACS applied materials & interfaces.

[60]  S. S. Kim,et al.  Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. , 2018, Journal of hazardous materials.

[61]  I. Iatsunskyi,et al.  Novel and Facile Route for the Synthesis of Tunable Boron Nitride Nanotubes Combining Atomic Layer Deposition and Annealing Processes for Water Purification , 2018 .

[62]  S. Efrati,et al.  Carbon monoxide poisoning in a young, healthy patient: A case study of heart failure recovery after Hyperbaric Oxygenation Treatment. , 2018, Intensive & critical care nursing.

[63]  Jae-Hun Kim,et al.  Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires , 2018, Sensors and Actuators B: Chemical.

[64]  R. V. Kumar,et al.  Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide , 2018, Sensors and Actuators B: Chemical.

[65]  M. Mikami,et al.  Trial of an All-Ceramic SnO2 Gas Sensor Equipped with CaCu3Ru4O12 Heater and Electrode , 2018, Materials.

[66]  N. Bhat,et al.  Self-heating oxidized suspended Pt nanowire for high performance hydrogen sensor , 2018 .

[67]  Jae-Hun Kim,et al.  Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review , 2018 .

[68]  C. Xie,et al.  Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays , 2018 .

[69]  Zenghai Zhang,et al.  Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors , 2018 .

[70]  Eduard Llobet,et al.  Flexible Gas Sensors Employing Octahedral Indium Oxide Films , 2018, Sensors.

[71]  Yunjiang Rao,et al.  Optical Graphene Gas Sensors Based on Microfibers: A Review , 2018, Sensors.

[72]  Joan Daniel Prades,et al.  A review on efficient self-heating in nanowire sensors: Prospects for very-low power devices , 2018 .

[73]  H. Joe,et al.  A review on optical fiber sensors for environmental monitoring , 2018 .

[74]  A. Majid,et al.  Hunter-Gatherer Olfaction Is Special , 2018, Current Biology.

[75]  Gyudo Lee,et al.  Recent advances in carbon material-based NO2 gas sensors , 2018 .

[76]  R. Sankar Ganesh,et al.  Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature , 2018 .

[77]  Jae-Hun Kim,et al.  Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers , 2018 .

[78]  M. Ek,et al.  Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth. , 2018, Accounts of chemical research.

[79]  Kengo Shimanoe,et al.  Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles. , 2018, Analytical chemistry.

[80]  Tommaso Addabbo,et al.  Quartz-Crystal Microbalance Gas Sensors Based on TiO2 Nanoparticles , 2018, IEEE Transactions on Instrumentation and Measurement.

[81]  D. H. Nguyen,et al.  Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications , 2017 .

[82]  R. Adelung,et al.  Properties of a single SnO2:Zn2SnO4 – Functionalized nanowire based nanosensor , 2017 .

[83]  Lingzhang Zhu,et al.  Room-temperature gas sensing of ZnO-based gas sensor: A review , 2017 .

[84]  W. Zeng,et al.  Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance , 2017 .

[85]  S. S. Kim,et al.  Self-heating effects on the toluene sensing of Pt-functionalized SnO2–ZnO core–shell nanowires , 2017 .

[86]  I. Iatsunskyi,et al.  Mechanical properties of boron nitride thin films prepared by atomic layer deposition , 2017 .

[87]  Silke Sachse,et al.  Fundamental principles of the olfactory code , 2017, Biosyst..

[88]  Jae-Hun Kim,et al.  Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review , 2017 .

[89]  Yeshaiahu Fainman,et al.  Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction , 2017, Nature Communications.

[90]  Fariborz Taghipour,et al.  UV-LED Photo-activated Chemical Gas Sensors: A Review , 2017 .

[91]  Jae Kyung Lee,et al.  Benzene sensing properties and sensing mechanism of Pd-decorated Bi2O3-core/ZnO-shell nanorods , 2017 .

[92]  N. A. Martínez,et al.  Clinical importance of olfactory function in neurodegenerative diseases , 2017 .

[93]  Chao Zhang,et al.  Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review , 2017 .

[94]  Bingqiang Cao,et al.  Improving the triethylamine sensing performance based on debye length: A case study on α-Fe2O3@NiO(CuO) core-shell nanorods sensor working at near room-temperature , 2017 .

[95]  Ghenadii Korotcenkov,et al.  Metal oxide composites in conductometric gas sensors: Achievements and challenges , 2017 .

[96]  J. McGann,et al.  Poor human olfaction is a 19th-century myth , 2017, Science.

[97]  T. Wong Smog induces oxidative stress and microbiota disruption , 2017, Journal of food and drug analysis.

[98]  Myung Sik Choi,et al.  Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties , 2017 .

[99]  Akshay V. Singhal,et al.  Noble Metal Decorated Graphene-Based Gas Sensors and Their Fabrication: A Review , 2017 .

[100]  S. S. Kim,et al.  Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers , 2016 .

[101]  A. Sundararajan,et al.  Solid–Liquid–Vapor Synthesis of Negative Metal Oxide Nanowire Arrays , 2016 .

[102]  Elisabetta Comini,et al.  Metal oxide nanowire chemical sensors: innovation and quality of life , 2016 .

[103]  G. Neri,et al.  Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review , 2016 .

[104]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[105]  M. S. Kamal,et al.  Catalytic oxidation of volatile organic compounds (VOCs) – A review , 2016 .

[106]  J. Arbiol,et al.  Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth. , 2016, Nano letters.

[107]  Ting Wang,et al.  Flexible Transparent Electronic Gas Sensors. , 2016, Small.

[108]  H. Jung,et al.  An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. , 2016, Nanoscale.

[109]  Seung-bok Choi,et al.  Synergistic effects of codecoration of oxide nanoparticles on the gas sensing performance of In2O3 nanorods , 2016 .

[110]  M. Meyyappan Carbon Nanotube-Based Chemical Sensors. , 2016, Small.

[111]  A. Mirzaei,et al.  α-Fe2O3 based nanomaterials as gas sensors , 2016, Journal of Materials Science: Materials in Electronics.

[112]  Mengmeng Li,et al.  Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor , 2016 .

[113]  Jae-Hun Kim,et al.  MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. , 2016, ACS applied materials & interfaces.

[114]  Sajad Kiani,et al.  Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review , 2016 .

[115]  W. Zhou,et al.  Metal-Organic Frameworks as Platforms for Functional Materials. , 2016, Accounts of chemical research.

[116]  Omar M. Aldossary,et al.  Enhanced BTEX gas-sensing performance of CuO/SnO2 composite , 2016 .

[117]  A. Elzatahry,et al.  Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures. , 2016, Nanoscale.

[118]  Mohammad Ali Mohammad,et al.  Surface acoustic wave devices for sensor applications , 2016 .

[119]  B. Calenic,et al.  Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review , 2016, Antioxidants.

[120]  Jingkun Yu,et al.  A review of high-temperature electrochemical sensors based on stabilized zirconia , 2015 .

[121]  Hyoun-woo Kim,et al.  Decoration of Co nanoparticles on ZnO-branched SnO2 nanowires to enhance gas sensing , 2015 .

[122]  Shukai Duan,et al.  Electronic Nose Feature Extraction Methods: A Review , 2015, Sensors.

[123]  R. Zbořil,et al.  Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. , 2015, Chemical Society reviews.

[124]  Jong Heun Lee,et al.  Highly selective and sensitive xylene sensors using Ni-doped branched ZnO nanowire networks , 2015 .

[125]  Sumita Santra,et al.  Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. , 2015, Nanoscale.

[126]  Soo‐Hyun Kim,et al.  Chemiresistive sensing behavior of SnO2 (n)-Cu2O (p) core-shell nanowires. , 2015, ACS applied materials & interfaces.

[127]  Sunghoon Park,et al.  Enhanced NO2 Gas Sensing Properties of WO3-Coated Multiwall Carbon Nanotube Sensors. , 2015, Journal of nanoscience and nanotechnology.

[128]  Jae-Hun Kim,et al.  Growth and sensing properties of networked p-CuO nanowires , 2015 .

[129]  Yongming Fu,et al.  Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor. , 2015, ACS applied materials & interfaces.

[130]  D. Leung,et al.  Low temperature catalytic oxidation of volatile organic compounds: a review , 2015 .

[131]  M. Verheijen,et al.  Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition , 2015, Nanotechnology.

[132]  C. G. Dighavkar,et al.  Semiconductor metal oxide compounds based gas sensors: A literature review , 2015, Frontiers of Materials Science.

[133]  Astrid Barona,et al.  A review of indoor air treatment technologies , 2015, Reviews in Environmental Science and Bio/Technology.

[134]  Nicola Donato,et al.  Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubes , 2015, Nanotechnology.

[135]  Giovanni Neri,et al.  First Fifty Years of Chemoresistive Gas Sensors , 2015 .

[136]  R. Kumar,et al.  Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review , 2014, Nano-Micro Letters.

[137]  Jong‐Heun Lee,et al.  Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. , 2014, ACS applied materials & interfaces.

[138]  Gwiy-Sang Chung,et al.  Effects of Pd nanocube size of Pd nanocube-graphene hybrid on hydrogen sensing properties , 2014 .

[139]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[140]  Hyunsung Ko,et al.  Light-activated gas sensing of Bi2O3-core/ZnO-shell nanobelt gas sensors , 2014 .

[141]  Xianying Wang,et al.  The ethanol-sensing properties of porous GaN nanofibers synthesized by electrospinning , 2014 .

[142]  Beong Ki Cho,et al.  Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability , 2014 .

[143]  Soo‐Hyun Kim,et al.  Dual functional sensing mechanism in SnO₂-ZnO core-shell nanowires. , 2014, ACS applied materials & interfaces.

[144]  R. Capuano,et al.  Solid-state gas sensors for breath analysis: a review. , 2014, Analytica chimica acta.

[145]  S. Rao,et al.  John Scott Haldane: The father of oxygen therapy , 2014, Indian journal of anaesthesia.

[146]  Sunghoon Park,et al.  Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature , 2014, Journal of Electroceramics.

[147]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[148]  W. Aronow,et al.  Cardiovascular Abnormalities in Carbon Monoxide Poisoning , 2014, American journal of therapeutics.

[149]  M. Ritala,et al.  Atomic Layer Deposition of Noble Metals and Their Oxides , 2014 .

[150]  Sunghoon Park,et al.  Enhanced gas sensing properties of branched ZnO nanowires , 2013 .

[151]  Ghenadii Korotcenkov,et al.  Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey) , 2013 .

[152]  Nicolae Barsan,et al.  Conduction mechanism in undoped and antimony doped SnO2 based FSP gas sensors , 2013 .

[153]  M. Gardon,et al.  A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors , 2013, Journal of Materials Science: Materials in Electronics.

[154]  M. Rosenberg Canary in the Coal Mine , 2013 .

[155]  Cell K. Y. Wong,et al.  Nanowire-based gas sensors , 2013 .

[156]  H. Fan,et al.  Branched nanowires: Synthesis and energy applications , 2012 .

[157]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[158]  Ji-Beom Yoo,et al.  Flexible hydrogen sensors using graphene with palladium nanoparticle decoration , 2012 .

[159]  S. S. Kim,et al.  Novel growth of CuO-functionalized, branched SnO2 nanowires and their application to H2S sensors , 2012 .

[160]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[161]  Nguyen Van Hieu,et al.  Size-dependent response of single-nanowire gas sensors , 2012 .

[162]  Kea-Tiong Tang,et al.  A review of sensor-based methods for monitoring hydrogen sulfide , 2012 .

[163]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[164]  Changhyun Jin,et al.  Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors , 2012 .

[165]  Q. Xue,et al.  The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation , 2011 .

[166]  E. Llobet,et al.  Gas sensing properties of multiwall carbon nanotubes decorated with rhodium nanoparticles , 2011, 1605.08079.

[167]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[168]  C. Detavernier,et al.  Tailoring nanoporous materials by atomic layer deposition. , 2011, Chemical Society reviews.

[169]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[170]  Udo Weimar,et al.  Influence of humidity on CO sensing with p-type CuO thick film gas sensors , 2011 .

[171]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[172]  P. Vasambekar,et al.  Ferrite Gas Sensors , 2011, IEEE Sensors Journal.

[173]  Jun Zhang,et al.  Enhanced sensor response of Ni-doped SnO2 hollow spheres , 2011 .

[174]  D. Suh,et al.  Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism , 2010 .

[175]  M. Zacharias,et al.  Nanowire-based sensors. , 2010, Small.

[176]  Fan Yang,et al.  Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. , 2010, Small.

[177]  Giorgio Sberveglieri,et al.  Metal oxide nanowires as chemical sensors , 2010 .

[178]  Russell Binions,et al.  Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring , 2010, Sensors.

[179]  Martin Moskovits,et al.  Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. , 2010, ACS nano.

[180]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[181]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[182]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[183]  Teerakiat Kerdcharoen,et al.  Sensor response formula for sensor based on ZnO nanostructures , 2010 .

[184]  Ion Tiginyanu,et al.  Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature , 2010 .

[185]  Qing Wang,et al.  Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures , 2009, Sensors.

[186]  Raed A Dweik,et al.  Exhaled breath analysis: The new interface between medicine and engineering. , 2009, Advanced powder technology : the international journal of the Society of Powder Technology, Japan.

[187]  T. Valdés-Solís,et al.  Shape and size effects of ZnO nanocrystals on photocatalytic activity. , 2009, Journal of the American Chemical Society.

[188]  Ghenadii Korotcenkov,et al.  Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor , 2009 .

[189]  Sanjay Mathur,et al.  Ultralow power consumption gas sensors based on self-heated individual nanowires , 2008 .

[190]  Aliasger K Salem,et al.  Optimization of Yield in Magnetic Cell Separations Using Nickel Nanowires of Different Lengths , 2008, Biotechnology progress.

[191]  Lei Liao,et al.  Single CeO2 Nanowire Gas Sensor Supported with Pt Nanocrystals : Gas Sensitivity, Surface Bond States, and Chemical Mechanism , 2008 .

[192]  E. Longo,et al.  P-type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films , 2008 .

[193]  Wei Lu,et al.  Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application , 2008 .

[194]  Young-Jin Choi,et al.  Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity , 2008, Nanotechnology.

[195]  Umasankar Yogeswaran,et al.  A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material , 2008, Sensors.

[196]  Dejun Fu,et al.  The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation , 2007 .

[197]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[198]  L. A. Patil,et al.  Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature , 2007 .

[199]  Vojtech Adam,et al.  Spectrometric and Voltammetric Analysis of Urease – Nickel Nanoelectrode as an Electrochemical Sensor , 2007, Sensors (Basel, Switzerland).

[200]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[201]  Saverio Mannino,et al.  On-demand protection of electrochemical sensors based on adaptive nanowires. , 2007, Journal of the American Chemical Society.

[202]  Yogeswaran Umasankar,et al.  Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. , 2007, Analytical biochemistry.

[203]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[204]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[205]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[206]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[207]  Jihye Gwak,et al.  Micro Semiconductor CO Sensors Based on Indium-Doped Tin Dioxide Nanocrystalline Powders , 2006, Sensors (Basel, Switzerland).

[208]  M. Hernández-Vélez,et al.  Nanowires and 1D arrays fabrication: An overview , 2006 .

[209]  Jenshan Lin,et al.  Room-Temperature Hydrogen-Selective Sensing Using Single Pt-Coated ZnO Nanowires at Microwatt Power Levels , 2005 .

[210]  C. Li,et al.  Selective functionalization of In2O3 nanowire mat devices for biosensing applications. , 2005, Journal of the American Chemical Society.

[211]  Khalil Arshak,et al.  Development of a novel gas sensor based on oxide thick films , 2005 .

[212]  Kagan Kerman,et al.  Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome , 2005 .

[213]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[214]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[215]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[216]  Khalil Arshak,et al.  A review of gas sensors employed in electronic nose applications , 2004 .

[217]  Xinrong Zhang,et al.  A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3 , 2004 .

[218]  Claude Lucat,et al.  Dynamic thermal conductivity sensor for gas detection , 2004 .

[219]  Alireza Salehi,et al.  A highly sensitive self heated SnO2 carbon monoxide sensor , 2003 .

[220]  A. K. Srivastava,et al.  Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network , 2003 .

[221]  Angeliki Tserepi,et al.  Thermal properties of suspended porous silicon micro-hotplates for sensor applications , 2003 .

[222]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[223]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[224]  Ricardo Gutierrez-Osuna,et al.  Pattern analysis for machine olfaction: a review , 2002 .

[225]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[226]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[227]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[228]  N. Bârsan,et al.  Micromachined metal oxide gas sensors: opportunities to improve sensor performance , 2001 .

[229]  David E. Williams,et al.  Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides , 2000 .

[230]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[231]  G. Sberveglieri,et al.  Photosensitivity activation of SnO2 thin film gas sensors at room temperature , 1996 .

[232]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[233]  S. B. Savvin,et al.  Chemical sensors: definitions and classification , 1991 .

[234]  S. Morrison Selectivity in semiconductor gas sensors , 1987 .

[235]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[236]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[237]  G. Heiland,et al.  Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen , 1954 .

[238]  S. S. Kim,et al.  Variation of shell thickness in ZnO-SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases , 2020 .

[239]  J. H. Lee,et al.  Technological realization of semiconducting metal oxide–based gas sensors , 2019, Gas Sensors Based on Conducting Metal Oxides.

[240]  H. Aminiahidashti,et al.  Carbon monoxide poisoning in Iran during 1999-2016: A systematic review and meta-analysis. , 2018, Journal of forensic and legal medicine.

[241]  H. Fredriksson,et al.  Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV–Vis and mass spectrometry and DFT , 2018 .

[242]  A. Mirzaei,et al.  Promotional effect of nitric acid treatment on co sensing properties of SnO2/MWCNT nanocomposites , 2016 .

[243]  Jae-Hun Kim,et al.  Optimum shell thickness and underlying sensing mechanism in p–n CuO–ZnO core–shell nanowires , 2016 .

[244]  M. Worsley,et al.  Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Low‐Power Catalytic Gas Sensing , 2016 .

[245]  K. Gross,et al.  Spinel ferrite oxide semiconductor gas sensors , 2016 .

[246]  Ganesh Kumar Mani,et al.  Electronic noses for food quality : a review , 2015 .

[247]  A. D. Wilson,et al.  Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment , 2012 .

[248]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[249]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[250]  Hyun Jae Kim,et al.  Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S , 2009 .

[251]  J. Bardeen,et al.  Surface properties of germanium , 1953 .