The β-Adrenergic Receptors

Background: The β-adrenergic receptors of the myocardium play an important role in the regulation of heart function. The β-adrenergic receptors belong to the family of G-protein coupled receptors. Three subtypes have been distinguished (β1-, β2-, and β3-adrenoceptors). The receptors consist of seven membrane-spanning domains, three intra- and three extracellular loops, one extracellular N-terminal domain, and one intracellular C-terminal tail. Pathophysiology: Stimulation of β-adrenergic receptors by catecholamines is realized via the β-adrenoceptor-adenylylcyclase-protein kinase A cascade. The second messenger is the cyclic AMP (cAMP). Stimulation of the cascade caused an accumulation of the second messenger cAMP and activated via the cAMP the cAMP dependent protein kinase A (PKA) The PKA phosphorylated, beside other cell proteins, the β-adrenergic receptors. A phosphorylation of the β-adrenergic receptors caused – with exception of the β3-adrenoceptor – an uncoupling and desensitisation of the receptors. Phosphorylation via the G-protein receptor kinase (GRK or βARK) also caused uncoupling and reduced the β-adrenergic responsiveness. The uncoupling of the receptor is the prerequisite for receptor internalisation. In the process of internalisation the receptor shifted from the sarcolemma membrane into cytosolic compartments. Chronic β-adrenergic stimulation caused a down-regulation of the receptors. During this process of desensitisation the expression of the receptor on mRNA and protein level is reduced. Changing of the Receptors in the Failing Heart: In patients with dilated cardiomyopathy the β-adrenergic responsiveness of the myocard is diminished. It was shown that in these patients the expression of the β1-adrenergic receptor is reduced on the mRNA and protein level. In these patients the expression of the inhibitory G-protein Gi is increased. Furthermore, the expression of the G-protein receptor kinase is elevated. This kinase induces the uncoupling of the β-adrenergic receptors. These alterations of the β-adrenoceptor signal cascade may be induced by an elevated catecholamine release or by agonist-like autoantibodies directed against the β1-adrenergic receptor found in patients with dilated cardiomyopathy. Both, permanent stimulation with catecholamines and chronic treatment with agonistic anti-β1-adrenoceptor autoantibodies cause a reduction of the expression of the β1-adrenoceptor on mRNA and protein level in “in vitro” experiments. Moreover, an over-expression of the β1-adrenoceptor, the stimulatory Gs protein, and the protein kinase A induce detrimental alterations of the cardiac function and morphology in transgenic animals. These animals developed heart failure accompanied by an increased mortality rate.Charakterisierung: Die β-adrenergen Rezeptoren des Herzens spielen in der Regulation der Herzfunktion eine entscheidende Rolle. Diese Rezeptoren gehören zur Familie der G-Protein-gekoppelten Rezeptoren und lassen sich in drei Subtypen (β1-, β2- und β3-Adrenozeptor) unterteilen. Die Rezeptoren bestehen aus sieben Domänen, welche die Zellmembran durchspannen, aus jeweils drei intra- und extrazellulären Schleifen, einem extrazellulären N-Terminus und einem intrazellulären C-Terminus. Pathophysiologie: Bei einer Stimulierung dieser Rezeptoren durch Katecholamine wird das Signal über die β-Adrenozeptor-Adenylylcyclase-Proteinkinase A-Kaskade in die Zelle vermittelt. Der “Second Messenger” ist das zyklische AMP (cAMP). Eine Stimulierung der Kaskade führt zu Akkumulation des cAMP und zu einer cAMP-vermittelten Aktivierung der Proteinkinase A (PKA). Die PKA prosphoryliert neben verschiedensten Zellproteinen auch β-adrenerge Rezeptoren. Eine Phosphorylierung der β-Adrenozeptoren führt, mit Ausnahme des β3-Rezeptors, zu einer Entkopplung und zu einer Desensibilisierung der Rezeptoren. Eine Phosphorylierung durch die G-Protein-Rezeptorkinase (GRK bzw. β-ARK) entkoppelt ebenfalls die Rezeptoren und führt zu einer Vemrinderung der β-adrenergen Ansprechbarkeit. Die Entkopplung des Rezeptors durch Phosphorylierung ist die Voraussetzung für die Rezeptorinternalisierung. In diesem Prozess wird der Rezeptor von der sarkolemmalen Membran in innere Kompartiments der Myozyten transloziert und so einer möglichen Stimulation entzogen. Bei einer chronischen adrenergen Stimulation werden die β-adrenergen Rezeptoren “downreguliert”. Bei dieser Art der Desensibilisierung ist die Expression der Rezeptoren auf mRNA-und Proteinebene reduziert. Veränderungen bei dilatativer Kardiomyopathie: Bei Patienten mit dilatativer Kardiomyopathie (DCM) wurde eine verminderte β-adrenerge Ansprechbarkeit des Herzens beobachtet. In diesen Patienten konnte eine β1-Adrenozeptor-spezifische Reduktion der mRNA und des Rezeptorproteins nachgewiesen werden. Die Expression und die Aktivität des inhibitorischen G-Proteins Gi ist in diesen Patienten erhöht. Des Weiteren ist die G-Protein-Rezeptorkinase, welche die Entkopplung des β-adrenergen Rezeptors induziert, verstärkt exprimiert. Diese bei der dilatativen Kardiomyopathie beobachteten Veränderungen am β1-Adrenozeptor könnten auf eine verstärkte Katcholaminfreisetzung bzw. auf agonistisch wirkende und gegen den β1-Adrenozeptor gerichtete Autoantikörper zurückzuführen sein. Sowohl eine permanente Stimulierung mit Katecholaminen als auch eine chronische Applikation von β1-Adrenozeptor-Autoantikörpern führen in vitro zu einer reduzierten Expression der β1-adrenergen Rezeptoren. Eine Überexpression des β1-Adrenozeptors, des stimulatorischen Gs-Proteins und der PKA führen in transgenen Tiermodellen zu Veränderungen der Herzfunktion und Morphologie, die bei diesen Tieren zu einer Herzinsuffizienz und zu einer erhöhten Mortalität führen.

[1]  F. Mayor,et al.  β-Adrenergic Receptor Kinase (GRK2) Colocalizes with β-Adrenergic Receptors during Agonist-induced Receptor Internalization* , 1997, The Journal of Biological Chemistry.

[2]  G. Wallukat,et al.  Immunochemical and functional characterization of an agonist-like monoclonal antibody against the M2 acetylcholine receptor. , 1998, European journal of biochemistry.

[3]  C. Dahlöf,et al.  Cardiac effects of beta-adrenergic receptor antagonists. , 1974, Advances in cardiology.

[4]  D. McDevitt In vivo studies on the function of cardiac β-adrenoceptors in man , 1989 .

[5]  J. Hoebeke Structural basis of autoimmunity against G protein coupled membrane receptors. , 1996, International journal of cardiology.

[6]  A. M. Lands,et al.  Differentiation of Receptor Systems activated by Sympathomimetic Amines , 1967, Nature.

[7]  A. Strosberg,et al.  Structure, function, and regulation of adrenergic receptors , 1993, Protein science : a publication of the Protein Society.

[8]  S. Jamieson,et al.  β1‐ and β2‐Adrenergic‐Receptor Subpopulations in Nonfailing and Failing Human Ventricular Myocardium: Coupling of Both Receptor Subtypes to Muscle Contraction and Selective β1‐Receptor Down‐Regulation in Heart Failure , 1986 .

[9]  C. Strader,et al.  Structural features required for ligand binding to the beta‐adrenergic receptor. , 1987, The EMBO journal.

[10]  L Gepstein,et al.  Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. , 2001, The Journal of clinical investigation.

[11]  J. Hoebeke,et al.  Anti‐peptide antibodies sensitive to the ‘active’ state of the β 2‐adrenergic receptor , 1996, FEBS letters.

[12]  Catherine,et al.  dentific ~ tion f Two Serine Residues Involved in Agonist Activation of the & Adrenergic Receptor ” , 2022 .

[13]  E. Olson,et al.  Dilated Cardiomyopathy and Sudden Death Resulting From Constitutive Activation of Protein Kinase A , 2001, Circulation research.

[14]  G. Wallukat,et al.  Agonistic Anti-β1-Adrenergic Receptor Autoantibodies From Cardiomyopathy Patients Reduce the β1-Adrenergic Receptor Expression in Neonatal Rat Cardiomyocytes , 1998 .

[15]  M. Lohse,et al.  Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. , 1999, Circulation.

[16]  S. Mills Implications of feedback regulation of beta-adrenergic signaling , 2002 .

[17]  P. Molenaar,et al.  Modulation of human cardiac function through 4 β-adrenoceptor populations , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[18]  M. Michel,et al.  Adrenergic and muscarinic receptors in the human heart. , 1999, Pharmacological reviews.

[19]  S. Vatner,et al.  Apoptosis of cardiac myocytes in Gsalpha transgenic mice. , 1999, Circulation research.

[20]  G. Wallukat,et al.  Autoantibodies against the beta1 adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. , 2001, Journal of molecular and cellular cardiology.

[21]  Robert J. Lefkowitz,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[22]  S. Liggett Functional Properties of Human b2-Adrenergic Receptor Polymorphisms , 1995 .

[23]  G. Wallukat,et al.  Anti-beta 1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. , 1995, Journal of molecular and cellular cardiology.

[24]  G. Wallukat,et al.  Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. , 1991, Differentiation; research in biological diversity.

[25]  S. Vatner,et al.  beta-adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsalpha overexpression and other genetically engineered animal models. , 2000, Circulation research.

[26]  B. Maisch,et al.  Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. , 1983, The American journal of cardiology.

[27]  J. Haft Cardiovascular injury induced by sympathetic catecholamines. , 1974, Progress in cardiovascular diseases.

[28]  G. Wallukat,et al.  Modulation of beta1-adrenoceptor activity by domain-specific antibodies and heart failure-associated autoantibodies. , 2000, Journal of the American College of Cardiology.

[29]  M. Caron,et al.  Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors. , 1990, The Journal of biological chemistry.

[30]  E Erdmann,et al.  Intracellular Calcium Handling in Isolated Ventricular Myocytes From Patients With Terminal Heart Failure , 1992, Circulation.

[31]  M. Lohse,et al.  Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Wallukat,et al.  An agonist-like monoclonal antibody against the human beta2-adrenoceptor. , 1998, European journal of pharmacology.

[33]  G. Wallukat,et al.  Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta 1-adrenoceptor with positive chronotropic effect. , 1994, Circulation.

[34]  C. Malbon,et al.  Agonist regulation of beta-adrenergic receptor mRNA. Analysis in S49 mouse lymphoma mutants. , 1989, The Journal of biological chemistry.

[35]  R. Ahlquist,et al.  A study of the adrenotropic receptors. , 1948, The American journal of physiology.

[36]  J. A. Thomas,et al.  Plasma norepinephrine in congestive heart failure. , 1978, The American journal of cardiology.

[37]  M. Lohse,et al.  Altered Expression of, ‐Adrenergic Receptor Kinase and 1‐Adrenergic Receptors in the Failing Human Heart , 1993 .

[38]  M. Lohse,et al.  Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the β1−adrenergic receptor , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  M. Böhm,et al.  Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure , 1995, Molecular and Cellular Biochemistry.

[40]  M. Lohse,et al.  Protein kinase a transgenes: the many faces of cAMP. , 2001, Circulation research.

[41]  J. Benovic,et al.  Visualization of Agonist-induced Sequestration and Down-regulation of a Green Fluorescent Protein-tagged β2-Adrenergic Receptor* , 1998, The Journal of Biological Chemistry.

[42]  G. Wallukat,et al.  The β1-adrenoceptor as antigen: functional aspects , 1995 .

[43]  P. Molinoff,et al.  International Union of Pharmacology nomenclature of adrenoceptors. , 1994, Pharmacological reviews.