HIV-1 capsid: the multifaceted key player in HIV-1 infection

In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core made from the viral capsid (CA) protein. The CA protein and the structure into which it assembles facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This Review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1.

[1]  S. Sawyer,et al.  HIV-1 Capsid-Targeting Domain of Cleavage and Polyadenylation Specificity Factor 6 , 2012, Journal of Virology.

[2]  C. Aiken,et al.  HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. , 2014, Virology.

[3]  R. Gorelick,et al.  Efficiency of Human Immunodeficiency Virus Type 1 Postentry Infection Processes: Evidence against Disproportionate Numbers of Defective Virions , 2007, Journal of Virology.

[4]  H. Göttlinger,et al.  Isolation of Human Immunodeficiency Virus Type 1 Cores: Retention of Vpr in the Absence of p6gag , 2000, Journal of Virology.

[5]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[6]  Zeger Debyser,et al.  Transportin-SR2 Imports HIV into the Nucleus , 2008, Current Biology.

[7]  Kenneth A. Matreyek,et al.  Differential Effects of Human Immunodeficiency Virus Type 1 Capsid and Cellular Factors Nucleoporin 153 and LEDGF/p75 on the Efficiency and Specificity of Viral DNA Integration , 2012, Journal of Virology.

[8]  Wesley I. Sundquist,et al.  Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication , 2002, Journal of Virology.

[9]  D. Pérez-Caballero,et al.  Restriction of Human Immunodeficiency Virus Type 1 by TRIM-CypA Occurs with Rapid Kinetics and Independently of Cytoplasmic Bodies, Ubiquitin, and Proteasome Activity , 2005, Journal of Virology.

[10]  J. Nieman,et al.  HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention , 2010, PLoS pathogens.

[11]  R. Benarous,et al.  Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import , 2011, Retrovirology.

[12]  S. Schleich,et al.  Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. , 2011, Cell host & microbe.

[13]  P. Bieniasz,et al.  Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors , 2003, Nature Medicine.

[14]  T. Hope,et al.  Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α , 2008, The Journal of cell biology.

[15]  L. Berthoux,et al.  Cytoplasmic Dynein Promotes HIV-1 Uncoating , 2014, Viruses.

[16]  C. Aiken,et al.  Analysis of Human Cell Heterokaryons Demonstrates that Target Cell Restriction of Cyclosporine-Resistant Human Immunodeficiency Virus Type 1 Mutants Is Genetically Dominant , 2007, Journal of Virology.

[17]  N. Hirokawa,et al.  Kinesin superfamily motor proteins and intracellular transport , 2009, Nature Reviews Molecular Cell Biology.

[18]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[19]  M. Carrington,et al.  Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. , 2013, The Journal of infectious diseases.

[20]  L. James,et al.  HIV-1 evades innate immune recognition through specific co-factor recruitment , 2013, Nature.

[21]  Jean-François Mercier,et al.  Discovery of Novel Small-Molecule HIV-1 Replication Inhibitors That Stabilize Capsid Complexes , 2013, Antimicrobial Agents and Chemotherapy.

[22]  T. Hope,et al.  Identification of Capsid Mutations That Alter the Rate of HIV-1 Uncoating in Infected Cells , 2014, Journal of Virology.

[23]  D. A. Bosco,et al.  Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Aiken,et al.  A Mutation in Alpha Helix 3 of CA Renders Human Immunodeficiency Virus Type 1 Cyclosporin A Resistant and Dependent: Rescue by a Second-Site Substitution in a Distal Region of CA , 2007, Journal of Virology.

[25]  S. Goff,et al.  Characterization of Intracellular Reverse Transcription Complexes of Human Immunodeficiency Virus Type 1 , 2001, Journal of Virology.

[26]  T. Hope,et al.  Complementary Assays Reveal a Low Level of CA Associated with Viral Complexes in the Nuclei of HIV-1-Infected Cells , 2015, Journal of Virology.

[27]  A. Engelman,et al.  The Host Proteins Transportin SR2/TNPO3 and Cyclophilin A Exert Opposing Effects on HIV-1 Uncoating , 2012, Journal of Virology.

[28]  Peijun Zhang,et al.  Structural Convergence between Cryo-EM and NMR Reveals Intersubunit Interactions Critical for HIV-1 Capsid Function , 2009, Cell.

[29]  J. Sodroski,et al.  Target Cell Type-Dependent Modulation of Human Immunodeficiency Virus Type 1 Capsid Disassembly by Cyclophilin A , 2009, Journal of Virology.

[30]  Jan Ellenberg,et al.  Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells , 2001, The Journal of cell biology.

[31]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[32]  C. Aiken,et al.  Association of Nef with the Human Immunodeficiency Virus Type 1 Core , 1999, Journal of Virology.

[33]  N. Pante,et al.  Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. , 2002, Molecular biology of the cell.

[34]  J. Luban Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection , 2006, Journal of Virology.

[35]  M. Emerman,et al.  Evidence for Direct Involvement of the Capsid Protein in HIV Infection of Nondividing Cells , 2007, PLoS pathogens.

[36]  J. Luban,et al.  Human Immunodeficiency Virus Type 1 Replication Is Modulated by Host Cyclophilin A Expression Levels , 1998, Journal of Virology.

[37]  Jeremy Luban,et al.  Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay , 2013, Retrovirology.

[38]  Kenneth A. Matreyek,et al.  The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid , 2011, Journal of Virology.

[39]  J. Luban,et al.  Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus , 2011, Retrovirology.

[40]  S. Shorte,et al.  Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes , 2006, Nature Methods.

[41]  J. Luban,et al.  Specific incorporation of cyclophilin A into HIV-1 virions , 1994, Nature.

[42]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[43]  E. Campbell,et al.  MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1 , 2014, Retrovirology.

[44]  A. Fassati,et al.  Viruses Challenge Selectivity Barrier of Nuclear Pores , 2013, Viruses.

[45]  Nan Yan,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses , 2013, Science.

[46]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Yeager,et al.  Structural basis of HIV-1 capsid recognition by PF74 and CPSF6 , 2014, Proceedings of the National Academy of Sciences.

[48]  Michael Emerman,et al.  Retroviral infection of non-dividing cells: old and new perspectives. , 2006, Virology.

[49]  S. Goff,et al.  Characterization of Intracellular Reverse Transcription Complexes of Moloney Murine Leukemia Virus , 1999, Journal of Virology.

[50]  D. Pérez-Caballero,et al.  Cyclophilin Interactions with Incoming Human Immunodeficiency Virus Type 1 Capsids with Opposing Effects on Infectivity in Human Cells , 2005, Journal of Virology.

[51]  S. Yamaoka,et al.  A Carboxy-Terminally Truncated Human CPSF6 Lacking Residues Encoded by Exon 6 Inhibits HIV-1 cDNA Synthesis and Promotes Capsid Disassembly , 2013, Journal of Virology.

[52]  Christopher T. Jones,et al.  A diverse array of gene products are effectors of the type I interferon antiviral response , 2011, Nature.

[53]  J. Luban,et al.  Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A , 1996, Journal of virology.

[54]  Baek Kim,et al.  Intracellular nucleotide levels and the control of retroviral infections. , 2013, Virology.

[55]  M. Peretz,et al.  A Cyclophilin Homology Domain-Independent Role for Nup358 in HIV-1 Infection , 2014, PLoS pathogens.

[56]  S. Kutluay,et al.  Fates of Retroviral Core Components during Unrestricted and TRIM5-Restricted Infection , 2013, PLoS pathogens.

[57]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[58]  J. Luban,et al.  Cyclophilin A regulates HIV‐1 infectivity, as demonstrated by gene targeting in human T cells , 2001, The EMBO journal.

[59]  I. Hurbain,et al.  The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. , 2013, Immunity.

[60]  Amy S. Espeseth,et al.  Genome-scale RNAi screen for host factors required for HIV replication. , 2008, Cell host & microbe.

[61]  Alan R. Lowe,et al.  Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking , 2010, Nature.

[62]  J. Luban,et al.  Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA , 2014, Retrovirology.

[63]  S. A. Chow,et al.  Role of Human Immunodeficiency Virus Type 1 Integrase in Uncoating of the Viral Core , 2010, Journal of Virology.

[64]  S. A. Chow,et al.  Requirement for Integrase during Reverse Transcription of Human Immunodeficiency Virus Type 1 and the Effect of Cysteine Mutations of Integrase on Its Interactions with Reverse Transcriptase , 2004, Journal of Virology.

[65]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[66]  Jennifer L. Bachorik,et al.  Transportin-SR, a Nuclear Import Receptor for SR Proteins , 1999, The Journal of cell biology.

[67]  J. Luban,et al.  Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription , 1996, Journal of virology.

[68]  L. James,et al.  HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358 , 2013, Retrovirology.

[69]  Walter Muranyi,et al.  Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid , 2014, eLife.

[70]  Ryan C. Burdick,et al.  Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes , 2013, Proceedings of the National Academy of Sciences.

[71]  F. Diaz-Griffero,et al.  Inhibition of Reverse Transcriptase Activity Increases Stability of the HIV-1 Core , 2012, Journal of Virology.

[72]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[73]  T. Hope,et al.  Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. , 2007, Virology.

[74]  J. Lieberman,et al.  The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1 , 2010 .

[75]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[76]  C. Aiken,et al.  Cyclophilin A-Dependent Restriction of Human Immunodeficiency Virus Type 1 Capsid Mutants for Infection of Nondividing Cells , 2008, Journal of Virology.

[77]  A. Gronenborn,et al.  Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects , 2012, Retrovirology.

[78]  P. Benaroch,et al.  HIV trafficking in host cells: motors wanted! , 2013, Trends in cell biology.

[79]  A. Fassati,et al.  Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration , 2011, PLoS pathogens.

[80]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[81]  M. Emerman,et al.  Capsid Is a Dominant Determinant of Retrovirus Infectivity in Nondividing Cells , 2004, Journal of Virology.

[82]  M. Malim,et al.  HIV-1 and interferons: who's interfering with whom? , 2015, Nature Reviews Microbiology.

[83]  A. Engelman,et al.  Flexible use of nuclear import pathways by HIV-1. , 2010, Cell host & microbe.

[84]  Amos B. Smith,et al.  Human Cytosolic Extracts Stabilize the HIV-1 Core , 2013, Journal of Virology.

[85]  G. Towers,et al.  A model for cofactor use during HIV-1 reverse transcription and nuclear entry☆ , 2014, Current opinion in virology.

[86]  I. Verma,et al.  Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Ashok Chauhan,et al.  Perturbation of Host Nuclear Membrane Component RanBP2 Impairs the Nuclear Import of Human Immunodeficiency Virus -1 Preintegration Complex (DNA) , 2010, PloS one.

[88]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2007, Science.

[89]  S. Cardinale,et al.  Mammalian pre-mRNA 3' end processing factor CF I m 68 functions in mRNA export. , 2009, Molecular biology of the cell.

[90]  E. Boritz,et al.  Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression , 2014, Nature.

[91]  Todd M. Allen,et al.  Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication , 2007, Journal of Virology.

[92]  F. Bushman,et al.  Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition , 1997, Journal of virology.

[93]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[94]  S. Antonarakis,et al.  TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm , 2013, Retrovirology.

[95]  C. Aiken,et al.  Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization , 2010, Journal of Virology.

[96]  S. Shorte,et al.  Human Nucleoporins Promote HIV-1 Docking at the Nuclear Pore, Nuclear Import and Integration , 2012, PloS one.

[97]  Mahdad Noursadeghi,et al.  HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency , 2011, PLoS pathogens.

[98]  J. Chin,et al.  Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly , 2014, PLoS pathogens.

[99]  Xiaojian Yao,et al.  Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein , 2015, Journal of Virology.

[100]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[101]  D. Walsh,et al.  HIV-1 induces the formation of stable microtubules to enhance early infection. , 2013, Cell host & microbe.

[102]  J. Sodroski,et al.  Functional association of cyclophilin A with HIV-1 virions , 1994, Nature.

[103]  Fulvio Mavilio,et al.  Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication , 2013, Retrovirology.

[104]  Torsten Schaller,et al.  HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2 , 2011, PLoS pathogens.

[105]  Kenneth A. Matreyek,et al.  The Requirement for Cellular Transportin 3 (TNPO3 or TRN-SR2) during Infection Maps to Human Immunodeficiency Virus Type 1 Capsid and Not Integrase , 2009, Journal of Virology.

[106]  C. Aiken,et al.  In Vivo Functions of CPSF6 for HIV-1 as Revealed by HIV-1 Capsid Evolution in HLA-B27-Positive Subjects , 2014, PLoS pathogens.

[107]  M. Niepel,et al.  The nuclear pore complex: bridging nuclear transport and gene regulation , 2010, Nature Reviews Molecular Cell Biology.

[108]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[109]  Jeremy Luban,et al.  Target Cell Cyclophilin A Modulates Human Immunodeficiency Virus Type 1 Infectivity , 2004, Journal of Virology.

[110]  E. Campbell,et al.  HIV-1 Uncoating Is Facilitated by Dynein and Kinesin 1 , 2014, Journal of Virology.

[111]  C. Aiken,et al.  In vitro uncoating of HIV-1 cores. , 2011, Journal of visualized experiments : JoVE.

[112]  R. Berro,et al.  Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin , 2006, Retrovirology.

[113]  Mark Yeager,et al.  Atomic-level modelling of the HIV capsid , 2011 .

[114]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[115]  C. Aiken Viral and cellular factors that regulate HIV-1 uncoating , 2006, Current opinion in HIV and AIDS.

[116]  W. Phares,et al.  Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins , 1996, Journal of virology.

[117]  S. Bosinger,et al.  Type I Interferon: Understanding Its Role in HIV Pathogenesis and Therapy , 2015, Current HIV/AIDS Reports.

[118]  I. Taylor,et al.  High-resolution structure of a retroviral capsid hexameric amino-terminal domain , 2004, Nature.

[119]  T. Hope,et al.  Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription , 2011, Proceedings of the National Academy of Sciences.

[120]  A. Engelman,et al.  Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation , 2013, Proceedings of the National Academy of Sciences.

[121]  Frederic D. Bushman,et al.  A quantitative assay for HIV DNA integration in vivo , 2001, Nature Medicine.

[122]  Kenneth A. Matreyek,et al.  Nucleoporin NUP153 Phenylalanine-Glycine Motifs Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral Infectivity , 2013, PLoS pathogens.

[123]  Z. Debyser,et al.  Identification of Residues in the C-terminal Domain of HIV-1 Integrase That Mediate Binding to the Transportin-SR2 Protein* , 2012, The Journal of Biological Chemistry.

[124]  Torsten Schaller,et al.  CPSF6 Defines a Conserved Capsid Interface that Modulates HIV-1 Replication , 2012, PLoS pathogens.

[125]  A. Brass,et al.  TNPO3 Is Required for HIV-1 Replication after Nuclear Import but prior to Integration and Binds the HIV-1 Core , 2012, Journal of Virology.

[126]  F. Bushman,et al.  Retroviral cDNA Integration: Stimulation by HMG I Family Proteins , 2000, Journal of Virology.

[127]  A. Engelman,et al.  Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication , 1995, Journal of virology.

[128]  L. James,et al.  Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D , 2008, Journal of Virology.

[129]  H. Kräusslich,et al.  Biochemical and Structural Analysis of Isolated Mature Cores of Human Immunodeficiency Virus Type 1 , 2000, Journal of Virology.

[130]  F. Bushman,et al.  HIV-1 cDNA Integration: Requirement of HMG I(Y) Protein for Function of Preintegration Complexes In Vitro , 1997, Cell.

[131]  Y. Xiong,et al.  HIV suppression by host restriction factors and viral immune evasion. , 2015, Current opinion in structural biology.