Plasticity and geophysical flows: A review

The objective of this review is to examine how the concept of plasticity is used in geophysical fluid dynamics. Rapid mass movements such as snow avalanches or debris flows involve slurries of solid particles (ice, boulder, clay, etc.) within an interstitial fluid (air, water). The bulk behavior of these materials has often been modeled as plastic materials, i.e., a plastic material yields and starts to flow once its stress state has significantly departed from equilibrium. Two plastic theories are of common use in fluid dynamics: Coulomb plasticity and viscoplasticity. These theories have little in common, since ideal Coulomb materials are two-phase materials for which pore pressure and friction play the key role in the bulk dynamics, whereas viscoplastic materials (e.g., Bingham fluids) typically behave as single-phase fluids on the macroscopic scale and exhibit a viscous behavior after yielding. Determining the rheological behavior of geophysical materials remains difficult because they encompass coarse, irregular particles over a very wide range of size. Consequently, the true nature of plastic behavior for geophysical flows is still vigorously debated. In this review, we first set out the continuum-mechanics principles used for describing plastic behavior. The notion of yield surface rather than yield stress is emphasized in order to better understand how tensorial constitutive equations can be derived from experimental data. The notion of single-phase or two-phase behaviors on the macroscopic scale is then examined using a microstructural analysis on idealized suspensions of spheres within a Newtonian fluid; for these suspensions, the single-phase approximation is valid only at very high or low Stokes numbers. Within this framework, the bulk stress tensor can also be constructed, which makes it possible to give a physical interpretation to yield stress. Most of the time, depending on the bulk properties (especially, particle size) and flow features, bulk behavior is either Coulomb-like or viscoplastic in simple-shear experiments. The consequences of the rheological properties on the flow features are also examined. Some remarkable properties of the governing equations describing thin layers flowing down inclined surfaces are discussed. Finally, the question of parameter fitting is tackled: since rheological properties cannot be measured directly in most cases, they must be evaluated from field data. As an example, we show that the Coulomb model successfully captures the main traits of avalanche motion, but statistical analysis demonstrates that the probability distribution of the friction coefficient is not universal.

[1]  M. Lighthill,et al.  On kinematic waves I. Flood movement in long rivers , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[3]  J. Major Depositional Processes in Large‐Scale Debris‐Flow Experiments , 1997, The Journal of Geology.

[4]  R. E. Meyer,et al.  Climb of a bore on a beach Part 3. Run-up , 1963, Journal of Fluid Mechanics.

[5]  Daniel De Kee,et al.  Non-Newtonian fluids with a yield stress , 2005 .

[6]  Fridtjov Irgens,et al.  A continuum model for calculating snow avalanche velocities , 1987 .

[7]  P. Y. Hicher,et al.  Micro-macro correlations for granular media. Application to the modelling of sands , 1994 .

[8]  Andrea Prosperetti,et al.  Flow of spatially non-uniform suspensions Part II: Systematic derivation of closure relations , 2000 .

[9]  Crucial role of sidewalls in granular surface flows: consequences for the rheology , 2005, Journal of Fluid Mechanics.

[10]  C. Ling,et al.  RHEOLOGICAL EQUATIONS IN ASYMPTOTIC REGIMES OF GRANULAR FLOW , 1998 .

[11]  M. Z. Sengun,et al.  Bimodal model of slurry viscosity with application to coal-slurries. Part 2. High shear limit behavior , 1989 .

[12]  Group theoretic methods and similarity solutions of the Savage-Hutter equations. , 2003 .

[13]  P. C. Kapur,et al.  Shear yield stress of partially flocculated colloidal suspensions , 1998 .

[14]  Chiang C. Mei,et al.  Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid , 1990 .

[15]  Arun R. Srinivasa,et al.  On the thermomechanics of materials that have multiple natural configurations , 2004 .

[16]  D. Zhang Evolution of enduring contacts and stress relaxation in a dense granular medium. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Timothy R. H. Davies,et al.  Large debris flows: A macro-viscous phenomenon , 1986 .

[18]  D. Cheng Yield stress: A time-dependent property and how to measure it , 1986 .

[19]  R. Hill The mathematical theory of plasticity , 1950 .

[20]  J. Gollub,et al.  Two-dimensional granular Poiseuille flow on an incline: multiple dynamical regimes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[22]  R. Kerswell,et al.  Dam break with Coulomb friction: a model for granular slumping , 2005 .

[23]  Charles S. Campbell,et al.  RAPID GRANULAR FLOWS , 1990 .

[24]  Evesque,et al.  Frictional-collisional regime for granular suspension flows down an inclined channel , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Richard L. Hoffman,et al.  Explanations for the cause of shear thickening in concentrated colloidal suspensions , 1998 .

[27]  Joseph B. Keller Shallow-water theory for arbitrary slopes of the bottom , 2003, Journal of Fluid Mechanics.

[28]  M. Denn,et al.  On the viscosity of a concentrated suspension of solid spheres , 1985 .

[29]  A. Hogg,et al.  The effects of hydraulic resistance on dam-break and other shallow inertial flows , 2004, Journal of Fluid Mechanics.

[30]  H. A. Barnes,et al.  Shear‐Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids , 1989 .

[31]  Richard M. Iverson,et al.  The debris-flow rheology myth , 2003 .

[32]  F. Oka Validity and Limits of the Effective Stress Concept in Geomechanics , 1996 .

[33]  Gianni Astarita,et al.  Letter to the Editor: The engineering reality of the yield stress , 1990 .

[34]  Russel,et al.  Fractal model of consolidation of weakly aggregated colloidal dispersions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[36]  Nuri Aksel,et al.  On the solid-liquid transition of concentrated suspensions in transient shear flow , 2002 .

[37]  Christophe Ancey,et al.  Solving the Couette inverse problem using a wavelet-vaguelette decomposition , 2005 .

[38]  Brian J. Briscoe,et al.  A finite element analysis of the squeeze flow of an elasto-viscoplastic paste material , 1997 .

[39]  P. Coussot,et al.  A large‐scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions , 1995 .

[40]  S. Dartevelle,et al.  Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows , 2004 .

[41]  P. Bartelt,et al.  Dissipated work, stability and the internal flow structure of granular snow avalanches , 2005, Journal of Glaciology.

[42]  G. Batchelor,et al.  The stress system in a suspension of force-free particles , 1970, Journal of Fluid Mechanics.

[43]  Cheng-Lung Chen Comprehensive review of debris flow modeling concepts in Japan , 1987 .

[44]  Barbara Zanuttigh,et al.  Analysis of Debris Wave Development with One-Dimensional Shallow-Water Equations , 2004 .

[45]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  Richard M. Iverson,et al.  Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation , 2004 .

[47]  Jean-Michel Piau,et al.  Flow of a yield stress fluid in a long domain. Application to flow on an inclined plane , 1996 .

[48]  A. Petrosyan,et al.  Particular solutions of shallow-water equations over a non-flat surface , 2000 .

[49]  D. Ende,et al.  MICRORHEOLOGICAL MODELING OF WEAKLY AGGREGATED DISPERSIONS , 1995 .

[50]  Leslie V. Woodcock,et al.  Recent developments in dense suspension rheology , 1991 .

[51]  A. Selvadurai,et al.  Plasticity and Geomechanics: Contents , 2002 .

[52]  Barbara Zanuttigh,et al.  Systematic comparison of debris-flow laws at the Illgraben torrent, Switzerland , 2003 .

[53]  W. Russel Review of the Role of Colloidal Forces in the Rheology of Suspensions , 1980 .

[54]  M. Arattano,et al.  Modelling debris flows as kinematic waves , 1994 .

[55]  Chris Phillips,et al.  Determining rheological parameters of debris flow material , 1991 .

[56]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[57]  Herbert E. Huppert,et al.  The intrusion of fluid mechanics into geology , 1986, Journal of Fluid Mechanics.

[58]  C. Mei,et al.  Slow spreading of a sheet of Bingham fluid on an inclined plane , 1989, Journal of Fluid Mechanics.

[59]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[60]  Shinji Egashira,et al.  Transition Mechanism of Debris Flows Over Rigid Bed to Over Erodible Bed , 2001 .

[61]  P. C. Kapur,et al.  Yield stress of suspensions loaded with size distributed particles , 1997 .

[62]  J. Trowbridge Instability of concentrated free surface flows , 1987 .

[63]  P. Coussot,et al.  Slow, unconfined spreading of a mudflow , 1996 .

[64]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[65]  Roux,et al.  Force Distributions in Dense Two-Dimensional Granular Systems. , 1996, Physical review letters.

[66]  Howard A. Barnes,et al.  The yield stress myth? , 1985 .

[67]  T. Lundgren,et al.  Slow flow through stationary random beds and suspensions of spheres , 1972, Journal of Fluid Mechanics.

[68]  Measurements of particle dynamics in slow, dense granular Couette flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Philippe Coussot,et al.  Direct Determination of Rheological Characteristics of Debris Flow , 2000 .

[70]  Y. Leong Yeow,et al.  Solving the inverse problem of Couette viscometry by Tikhonov regularization , 2000 .

[71]  J. Gratton,et al.  Self-similar gravity currents with variable inflow revisited: plane currents , 1994, Journal of Fluid Mechanics.

[72]  C. R. Wildemuth,et al.  A new interpretation of viscosity and yield stress in dense slurries: Coal and other irregular particles , 1985 .

[73]  Howard A. Barnes,et al.  Rotating vane rheometry — a review , 2001 .

[74]  R. Probstein,et al.  Bimodal model of slurry viscosity with application to coal-slurries. Part 1. Theory and experiment , 1989 .

[75]  A. Siviglia,et al.  Effect of bottom curvature on mudflow dynamics: Theory and experiments , 2005 .

[76]  Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple elastoplastic model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Alexandre Remaître,et al.  Flow behaviour and runout modelling of a complex debris flow in a clay‐shale basin , 2005 .

[78]  Zdenek P. Bazant,et al.  Microplane Constitutive Model and Metal Plasticity , 2000 .

[79]  P. Coussot,et al.  A theoretical framework for granular suspensions in a steady simple shear flow , 1999 .

[80]  K. Hutter,et al.  Unconfined flow of granular avalanches along a partly curved surface. I. Theory , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[81]  C. Ancey Role of lubricated contacts in concentrated polydisperse suspensions , 2001 .

[82]  P. Heinrich,et al.  Analytical Solution for Testing Debris Avalanche Numerical Models , 2000 .

[83]  Chiang C. Mei,et al.  ROLL WAVES ON A LAYER OF A MUDDY FLUID FLOWING DOWN A GENTLE SLOPE : A BINGHAM MODEL , 1994 .

[84]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[85]  F. Tiefenbacher,et al.  The rheology of snow in large chute flows , 2004 .

[86]  Richard M. Iverson,et al.  Surge dynamics coupled to pore-pressure evolution in debris flows , 2003 .

[87]  D. Mctigue,et al.  Geotechnical properties of debris-flow sediments and slurries , 1997 .

[88]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[89]  Cheng‐lung Chen,et al.  General Solutions for Viscoplastic Debris Flow , 1988 .

[90]  T. E. Lang,et al.  Experiments on mechanics of flowing snow , 1982 .

[91]  M. Quecedo,et al.  Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models , 2004 .

[92]  D. M. Husband,et al.  The existence of static yield stresses in suspensions containing noncolloidal particles , 1993 .

[93]  Peter Gauer,et al.  under a Creative Commons License. Natural Hazards and Earth System Sciences Emerging insights into the dynamics of submarine debris flows , 2022 .

[94]  T. E. Lang,et al.  A Biviscous Modified Bingham Model of Snow Avalanche Motion , 1983, Annals of Glaciology.

[95]  D. V. Boger,et al.  The rheology of a concentrated colloidal suspension of hard spheres , 1991 .

[96]  S. Savage,et al.  Similarity solutions for avalanches of granular materials down curved beds , 1988 .

[97]  M. Schatzmann,et al.  Rheological behavior of fine and large particle suspensions , 2003 .

[98]  F. Sidoroff,et al.  Homogenization for granular materials , 1995 .

[99]  C. Graf,et al.  Field and monitoring data of debris-flow events in the Swiss Alps , 2003 .

[100]  Rheological constitutive equation for a model of soft glassy materials , 1997, cond-mat/9712001.

[101]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[102]  J. Major Experimental studies of deposition by debris flows: process, characteristics of deposits, and effects of pore-fluid pressure , 1996 .

[103]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[104]  G. Matson,et al.  Two-dimensional dam break flows of Herschel–Bulkley fluids: The approach to the arrested state , 2007 .

[105]  Jean Salençon,et al.  Introduction to the yield design theory and its applications to soil mechanics , 1990 .

[106]  S. Savage,et al.  Granular Flows Down Rough Inclines - Review and Extension , 1983 .

[107]  J. Goddard,et al.  Computations of dilatancy and yield surfaces for assemblies of rigid frictional spheres , 1998 .

[108]  B. Salm,et al.  Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining , 1999, Journal of Glaciology.

[109]  R. Craster,et al.  Dynamics of cooling viscoplastic domes , 2004, Journal of Fluid Mechanics.

[110]  Kolumban Hutter,et al.  Dynamic response of granular and porous materials under large and catastrophic deformations , 2003 .

[111]  Philippe Coussot,et al.  Rheological interpretation of deposits of yield stress fluids , 1996 .

[112]  J. Goddard Dissipative materials as models of thixotropy and plasticity , 1984 .

[113]  J. Goddard An elastohydrodynamic theory for the rheology of concentrated suspensions of deformable particles , 1977 .

[114]  G. Mandl,et al.  Fully Developed Plastic Shear Flow of Granular Materials , 1970 .

[115]  K. Hohenemser,et al.  Über die Ansätze der Mechanik isotroper Kontinua , 1932 .

[116]  P. Scales,et al.  THE YIELD STRESS OF CONCENTRATED FLOCCULATED SUSPENSIONS OF SIZE DISTRIBUTED PARTICLES , 1999 .

[117]  S. Pudasaini,et al.  Rapid shear flows of dry granular masses down curved and twisted channels , 2003, Journal of Fluid Mechanics.

[118]  E. C. Bingham Fluidity And Plasticity , 1922 .

[119]  R. Iverson,et al.  Debris-flow mechanics , 2005 .

[120]  Ping-pong ball avalanche at a ski jump , 1998 .

[121]  Philippe Coussot,et al.  Rheology of aging, concentrated, polymeric suspensions: Application to pasty sewage sludges , 2001 .

[122]  Alessandro Simoni,et al.  Field observations of a debris flow event in the Dolomites , 1999 .

[123]  P. Coussot,et al.  Examination of the possibility of a fluid-mechanics treatment of dense granular flows , 1996 .

[124]  Arshad Kudrolli,et al.  Failure of a granular step. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  Francis Gadala-Maria,et al.  Fore‐and‐Aft Asymmetry in a Concentrated Suspension of Solid Spheres , 1987 .

[126]  C. Keylock,et al.  Snow avalanches , 1997 .

[127]  David L. McDowell,et al.  Modeling and experiments in plasticity , 2000 .

[128]  Christophe Ancey,et al.  Estimating bulk rheological properties of flowing snow avalanches from field data , 2004 .

[129]  Hans J. Herrmann,et al.  Physics of granular media , 1995 .

[130]  D. Prasad,et al.  Particle stress and viscous compaction during shear of dense suspensions , 1995 .

[131]  C. Josserand,et al.  Stationary shear flows of dense granular materials: a tentative continuum modelling , 2004, The European physical journal. E, Soft matter.

[132]  R. Hoffman Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability , 1972 .

[133]  J. Brady The rheological behavior of concentrated colloidal dispersions , 1993 .

[134]  Philippe Coussot,et al.  Viscosity bifurcation in thixotropic, yielding fluids , 2002 .

[135]  Stephen K. Wilson,et al.  On the gravity-driven draining of a rivulet of a viscoplastic material down a slowly varying substrate , 2002 .

[136]  Richard V. Craster,et al.  A consistent thin-layer theory for Bingham plastics , 1999 .

[137]  Liu,et al.  Force Distributions near Jamming and Glass Transitions. , 2001, Physical review letters.

[138]  L. Heymann,et al.  Thixotropy in macroscopic suspensions of spheres. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[139]  N. Bohr MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[140]  Gary S Grest,et al.  Analogies between granular jamming and the liquid-glass transition. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  N. Thomas,et al.  Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits , 2003, cond-mat/0312541.

[142]  Hubert Chanson,et al.  Continuous or catastrophic solid-liquid transition in jammed systems , 2005 .

[143]  G. Weir The asymptotic behaviour of simple kinematic waves of finite volume , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[144]  Xin Huang,et al.  A Herschel–Bulkley model for mud flow down a slope , 1998, Journal of Fluid Mechanics.

[145]  J. Hartnett,et al.  Technical note: The yield stress—An engineering reality , 1989 .

[146]  Adrian Lange,et al.  Faraday instability on viscous ferrofluids in a horizontal magnetic field: oblique rolls of arbitrary orientation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  S. Contreras,et al.  COARSE-GRAINED DEBRIS-FLOWS: HYSTERESIS AND TIME-DEPENDENT RHEOLOGY. TECHNICAL NOTE , 2000 .

[148]  Michele Larcher,et al.  Rheological stratification in experimental free-surface flows of granular–liquid mixtures , 2005, Journal of Fluid Mechanics.

[149]  Tjondro Indrasutanto,et al.  Dynamics of Lava Flows , 2009 .

[150]  B. Grady,et al.  Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition. , 2006, Journal of colloid and interface science.

[151]  Marie Chaze,et al.  Change of scale in granular materials , 2000 .

[152]  R. Iverson,et al.  Friction in Debris Flows: Inferences from Large-scale Flume Experiments , 1993 .

[153]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests , 2001 .

[154]  M. Jakob,et al.  Debris-flow Hazards and Related Phenomena , 2005 .

[155]  David T. Leighton,et al.  The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids , 2000 .

[156]  Kelin X. Whipple,et al.  Experimental Study of the Grain‐Flow, Fluid‐Mud Transition in Debris Flows , 2001, The Journal of Geology.

[157]  Morton M. Denn,et al.  Flow of bingham fluids in complex geometries , 1984 .

[158]  Christophe Ancey,et al.  Monte Carlo calibration of avalanches described as Coulomb fluid flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[159]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[160]  P. Sollich,et al.  Aging and rheology in soft materials , 1999 .

[161]  S. Sakimoto,et al.  Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows , 2001 .

[162]  J. Aragón Granular-Fluid Chute Flow: Experimental and Numerical Observations , 1995 .

[163]  G. Batchelor,et al.  Brownian diffusion of particles with hydrodynamic interaction , 1976, Journal of Fluid Mechanics.

[164]  R. Dressler,et al.  Unsteady non-linear waves in sloping channels , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[165]  N. Balmforth,et al.  Granular collapse in two dimensions , 2005, Journal of Fluid Mechanics.

[166]  A. Selvadurai,et al.  Elasticity and Geomechanics , 1996 .

[167]  D. Mcclung,et al.  Superelevation of flowing avalanches around curved channel bends , 2001 .

[168]  R. Craster,et al.  Shallow viscoplastic flow on an inclined plane , 2002, Journal of Fluid Mechanics.

[169]  Teamrat A. Ghezzehei,et al.  Rheological properties of wet soils and clays under steady and oscillatory stresses , 2000 .

[170]  C. Kruif,et al.  Hard‐sphere Colloidal Dispersions: The Scaling of Rheological Properties with Particle Size, Volume Fraction, and Shear Rate , 1989 .

[171]  G. Batchelor,et al.  Transport Properties of Two-Phase Materials with Random Structure , 1974 .

[172]  Bruce Hunt,et al.  Newtonian Fluid Mechanics Treatment of Debris Flows and Avalanches , 1994 .

[173]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[174]  B. Perthame,et al.  A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows , 2003 .

[175]  K. Roscoe THE INFLUENCE OF STRAINS IN SOIL MECHANICS , 1970 .

[176]  Philippe Coussot,et al.  Steady, laminar, flow of concentrated mud suspensions in open channel , 1994 .

[177]  Arun R. Srinivasa,et al.  On the thermomechanics of materials that have multiple natural configurations Part I: Viscoelasticity and classical plasticity , 2004 .

[178]  Jon J. Major,et al.  Debris flow rheology: Experimental analysis of fine‐grained slurries , 1992 .

[179]  H. Brenner,et al.  Spatially periodic suspensions of convex particles in linear shear flows. II. Rheology , 1985 .

[180]  N R Morgenstern,et al.  Experiments on the flow behaviour of granular materials at high velocity in an open channel , 1984 .

[181]  Richard M. Iverson,et al.  Prediction in geomorphology , 2003 .

[182]  Maurice Meunier,et al.  Fitting avalanche-dynamics models with documented events from the Col du Lautaret site (France) using the conceptual approach , 2004 .

[183]  H. Barnes Thixotropy—a review , 1997 .

[184]  P. Hébraud,et al.  Giant stress fluctuations at the jamming transition. , 2003, Physical Review Letters.

[185]  Othmar Buser,et al.  Observed Maximum Run-Out Distance of Snow Avalanches and the Determination of the Friction Coefficients µ and ξ , 1980, Journal of Glaciology.

[186]  Olivier Pouliquen,et al.  Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane , 2001, Journal of Fluid Mechanics.

[187]  Pierre Y. Julien,et al.  Laboratory Analysis of Mudflow Properties , 1988 .

[188]  R. W. Griffiths,et al.  The static shape of yield strength fluids slowly emplaced on slopes , 2001 .

[189]  F I G Rawlins,et al.  Six Lectures on Modern Natural Philosophy , 1966 .

[190]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[191]  A. Prosperetti The average stress in incompressible disperse flow , 2004 .

[192]  C. Mei,et al.  Slow flow of a Bingham fluid in a shallow channel of finite width , 2001, Journal of Fluid Mechanics.

[193]  A. Berker,et al.  Phenomenological models of viscoplastic, thixotropic, and granular materials , 1992 .

[194]  T. E. Lang,et al.  Modeling of snow flow , 1980 .

[195]  D. Zhang,et al.  Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions , 1997 .

[196]  Kelin X. Whipple,et al.  Open‐Channel Flow of Bingham Fluids: Applications in Debris‐Flow Research , 1997, The Journal of Geology.

[197]  J. Oldroyd A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[198]  P. Coussot,et al.  Rheophysical classification of concentrated suspensions and granular pastes , 1999 .

[199]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[200]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments , 1995 .

[201]  Cemagref,et al.  Yield stress for particle suspensions within a clay dispersion , 2001 .

[202]  Peter Sollich,et al.  Rheology of Soft Glassy Materials , 1996, cond-mat/9611228.

[203]  François Nicot,et al.  A multi-scale approach to granular materials , 2005 .

[204]  S. Miwa,et al.  Flow of Granular Materials , 1973 .

[205]  Bruno Salm,et al.  Avalanche formation, movement and effects , 1987 .

[206]  Philippe Coussot,et al.  Avalanche behavior in yield stress fluids. , 2002, Physical review letters.

[207]  J. Stickel,et al.  FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS , 2001 .

[208]  W. Ammann,et al.  A new Swiss test-site for avalanche experiments in the Vallée de la Sionne/Valais , 1999 .

[209]  M. Cates,et al.  Jamming, Force Chains, and Fragile Matter , 1998, cond-mat/9803197.

[210]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[211]  Xin Huang,et al.  A perturbation solution for Bingham-plastic mudflows , 1997 .

[212]  E. Eisenberg,et al.  Jamming , 1990, Encyclopedia of Wireless Networks.

[213]  Reghan J. Hill,et al.  INERTIAL EFFECTS IN SUSPENSION AND POROUS-MEDIA FLOWS , 2001 .

[214]  Bob Svendsen,et al.  Debris flow modeling: A review , 1994 .

[215]  J. Major Gravity-Driven Consolidation of Granular Slurries--Implications for Debris-Flow Deposition and Deposit Characteristics , 2000 .

[216]  Christopher J. Keylock,et al.  Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites , 2000 .

[217]  Submarine Landslides , 1929, Science.

[218]  R. Byron Bird,et al.  The Rheology and Flow of Viscoplastic Materials , 1983 .

[219]  C. Ancey,et al.  Classification of debris-flow deposits for hazard assessment in alpine areas , 2003 .

[220]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[221]  D. Z. Zhang,et al.  Stress relaxation in dense and slow granular flows , 2000 .

[222]  D. Cheng,et al.  Characterisation of thixotropy revisited , 2003 .

[223]  E. J. Hinch,et al.  An averaged-equation approach to particle interactions in a fluid suspension , 1977, Journal of Fluid Mechanics.

[224]  Tamotsu Takahashi,et al.  What is debris flow , 2007 .

[225]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[226]  T. J. Ward,et al.  Mudflow Rheology and Dynamics , 2001 .