Identification of structural aberrations in cancer by SNP array analysis

Recent studies using single-nucleotide polymorphism arrays have pinpointed novel oncogenes and tumor suppressors involved in specific types of human cancers.

[1]  A T Look,et al.  Oncogenic transcription factors in the human acute leukemias. , 1997, Science.

[2]  G. Mills,et al.  Molecular therapeutics: promise and challenges. , 2004, Seminars in oncology.

[3]  Francisco Cervantes,et al.  Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. , 2006, The New England journal of medicine.

[4]  E. Connolly,et al.  Chromosome 1p and 11q Deletions and Outcome in Neuroblastoma. , 2006, Neurosurgery.

[5]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[6]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[7]  Diana Blaydon,et al.  Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. , 2005, Cancer research.

[8]  L. Chin,et al.  Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers , 2007, Nature.

[9]  William C Hahn,et al.  Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants , 2005, PLoS medicine.

[10]  Wing Hung Wong,et al.  Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays , 2006, PLoS Comput. Biol..

[11]  M. Meyerson,et al.  Genome-Wide Analysis of Neuroblastomas using High-Density Single Nucleotide Polymorphism Arrays , 2007, PloS one.

[12]  Cheng Li,et al.  dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data , 2004, Bioinform..

[13]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[14]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[15]  M. Busslinger,et al.  Pax5: the guardian of B cell identity and function , 2007, Nature Immunology.

[16]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[17]  Joon-Oh Park,et al.  MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling , 2007, Science.

[18]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[19]  S. Armstrong,et al.  Molecular genetics of acute lymphoblastic leukemia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[21]  Rameen Beroukhim,et al.  Erratum: Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP arrays (PLoS Computational Biology 2, 5, doi:10.1371/journal.pcbi.0020041) , 2007 .

[22]  James M. Roberts,et al.  The murine gene p27Kip1 is haplo-insufficient for tumour suppression , 1998, Nature.

[23]  P. Pandolfi,et al.  Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. , 2005, Genes & development.

[24]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[25]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[26]  C. Sawyers Making progress through molecular attacks on cancer. , 2005, Cold Spring Harbor symposia on quantitative biology.