On the Spectrum of Deflated Matrices with Applications to the Deflated Shifted Laplace Preconditioner for the Helmholtz Equation

The deflation technique for accelerating Krylov subspace iterative methods for the solution of linear systems has long been well established. The first landmark papers of Nicolaides and Dostal date...

[1]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[2]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[3]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[4]  Z. Dostál Conjugate gradient method with preconditioning by projector , 1988 .

[5]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[6]  Wim Vanroose,et al.  Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..

[7]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[8]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[9]  André Gaul,et al.  Recycling Krylov subspace methods for sequences of linear systems , 2014 .

[10]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[11]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[12]  Maxim A. Olshanskii,et al.  Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..

[13]  Eugene E. Tyrtyshnikov,et al.  Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..