On the Spectrum of Deflated Matrices with Applications to the Deflated Shifted Laplace Preconditioner for the Helmholtz Equation
暂无分享,去创建一个
[1] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[2] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[3] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .
[4] Z. Dostál. Conjugate gradient method with preconditioning by projector , 1988 .
[5] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[6] Wim Vanroose,et al. Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..
[7] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[8] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[9] André Gaul,et al. Recycling Krylov subspace methods for sequences of linear systems , 2014 .
[10] Reinhard Nabben,et al. Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..
[11] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[12] Maxim A. Olshanskii,et al. Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..
[13] Eugene E. Tyrtyshnikov,et al. Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..