Privacy in targeted advertising: A survey

Targeted advertising has transformed the marketing trend for any business by creating new opportunities for advertisers to reach prospective customers by delivering them personalised ads using an infrastructure of a variety of intermediary entities and technologies. The advertising and analytics companies collect, aggregate, process and trade a rich amount of user's personal data, which has prompted serious privacy concerns among individuals and organisations. This article presents a detailed survey of privacy risks including the information flow between advertising platform and ad/analytics networks, the profiling process, the advertising sources and criteria, the measurement analysis of targeted advertising based on user's interests and profiling context and ads delivery process in both in-app and in-browser targeted ads. We provide detailed discussion of challenges in preserving user privacy that includes privacy threats posed by the advertising and analytics companies, how private information is extracted and exchanged among various advertising entities, privacy threats from third-party tracking, re-identification of private information and associated privacy risks, in addition to, overview data and tracking sharing technologies. Following, we present various techniques for preserving user privacy and a comprehensive analysis of various proposals founded on those techniques and compare them based on the underlying architectures, the privacy mechanisms and the deployment scenarios. Finally we discuss some potential research challenges and open research issues.

[1]  Hema Yoganarasimhan,et al.  Targeting and Privacy in Mobile Advertising , 2020, Mark. Sci..

[2]  Ian Goldberg,et al.  Polynomial Commitments , 2010 .

[3]  Tao Feng,et al.  Differential Private Spatial Decomposition and Location Publishing Based on Unbalanced Quadtree Partition Algorithm , 2020, IEEE Access.

[4]  Norman M. Sadeh,et al.  What do they know about me? Contents and Concerns of Online Behavioral Profiles , 2015, ArXiv.

[5]  Vincent S. Tseng,et al.  Demographic Prediction Based on User's Mobile Behaviors , 2012 .

[6]  Ming Zhang,et al.  Where is the energy spent inside my app?: fine grained energy accounting on smartphones with Eprof , 2012, EuroSys '12.

[7]  Dan S. Wallach,et al.  An Empirical Study of Mobile Ad Targeting , 2015, ArXiv.

[8]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[9]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.

[10]  Yong Wang,et al.  Understanding the Network and User-Targeting Properties of Web Advertising Networks , 2011, 2011 31st International Conference on Distributed Computing Systems.

[11]  Suman Nath,et al.  Differentially private aggregation of distributed time-series with transformation and encryption , 2010, SIGMOD Conference.

[12]  Saikat Guha,et al.  Challenges in measuring online advertising systems , 2010, IMC '10.

[13]  Amos Beimel,et al.  Robust Information-Theoretic Private Information Retrieval , 2002, Journal of Cryptology.

[14]  Garrett A. Johnson,et al.  Consumer Privacy Choice in Online Advertising: Who Opts Out and at What Cost to Industry? , 2020, Mark. Sci..

[15]  T. Graepel,et al.  Private traits and attributes are predictable from digital records of human behavior , 2013, Proceedings of the National Academy of Sciences.

[16]  Byung-Gon Chun,et al.  TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones , 2010, OSDI.

[17]  C. Bellavitis,et al.  Blockchain Disruption and Decentralized Finance: The Rise of Decentralized Business Models , 2019, Journal of Business Venturing Insights.

[18]  Yvo Desmedt,et al.  How to Break a Practical MIX and Design a New One , 2000, EUROCRYPT.

[19]  Alessandro Acquisti,et al.  The Impact of Ad-Blockers on Product Search and Purchase Behavior: A Lab Experiment , 2020, USENIX Security Symposium.

[20]  Salil S. Kanhere,et al.  Blockchain Technologies for IoT , 2019, Studies in Big Data.

[21]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[22]  Balachander Krishnamurthy,et al.  On the leakage of personally identifiable information via online social networks , 2009, CCRV.

[23]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[24]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[25]  Jan Camenisch,et al.  Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes , 1998, EUROCRYPT.

[26]  Helen Nissenbaum,et al.  Trackmenot: Resisting Surveillance in Web Search , 2015 .

[27]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[28]  Mohamed Ali Kâafar,et al.  You are what you like! Information leakage through users' Interests , 2012, NDSS.

[29]  Avi Goldfarb,et al.  Online Display Advertising: Targeting and Obtrusiveness , 2011, Mark. Sci..

[30]  P. Francis,et al.  Privad: Rearchitecting Online Advertising for Privacy , 2009 .

[31]  Azeem J. Khan,et al.  CAMEO: a middleware for mobile advertisement delivery , 2013, MobiSys '13.

[32]  Patrick D. McDaniel,et al.  On lightweight mobile phone application certification , 2009, CCS.

[33]  Hyunghoon Cho,et al.  Contact Tracing Mobile Apps for COVID-19: Privacy Considerations and Related Trade-offs , 2020, ArXiv.

[34]  Saikat Guha,et al.  Serving Ads from localhost for Performance, Privacy, and Profit , 2009, HotNets.

[35]  Adam D. Smith,et al.  Composition attacks and auxiliary information in data privacy , 2008, KDD.

[36]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[37]  Ayman Farahat How effective is targeted advertising? , 2013, ACC.

[38]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[39]  S. Muthukrishnan,et al.  General auction mechanism for search advertising , 2008, WWW '09.

[40]  Tal Malkin,et al.  A Random Server Model for Private Information Retrieval or How to Achieve Information Theoretic PIR Avoiding Database Replication , 1998, RANDOM.

[41]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[42]  Roxana Geambasu,et al.  XRay: Enhancing the Web's Transparency with Differential Correlation , 2014, USENIX Security Symposium.

[43]  Narseo Vallina-Rodriguez,et al.  Apps, Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosystem , 2018, NDSS.

[44]  Ian Goldberg,et al.  The Best of Both Worlds: Combining Information-Theoretic and Computational PIR for Communication Efficiency , 2014, Privacy Enhancing Technologies.

[45]  Hao Chen,et al.  Investigating User Privacy in Android Ad Libraries , 2012 .

[46]  Xing Xie,et al.  PrivTree: A Differentially Private Algorithm for Hierarchical Decompositions , 2016, SIGMOD Conference.

[47]  Seungyeop Han,et al.  These aren't the droids you're looking for: retrofitting android to protect data from imperious applications , 2011, CCS '11.

[48]  Jianliang Xu,et al.  Towards Accurate Histogram Publication under Differential Privacy , 2014, SDM.

[49]  Qiang Xu,et al.  Identifying diverse usage behaviors of smartphone apps , 2011, IMC '11.

[50]  Suman Nath,et al.  MAdScope: Characterizing Mobile In-App Targeted Ads , 2015, MobiSys.

[51]  Zhenyu Liu,et al.  Inferring Privacy Information from Social Networks , 2006, ISI.

[52]  Qiang Ma,et al.  Adscape: harvesting and analyzing online display ads , 2014, WWW.

[53]  Lise Getoor,et al.  To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles , 2009, WWW '09.

[54]  Hassan Artail,et al.  A Privacy-Preserving Framework for Managing Mobile Ad Requests and Billing Information , 2015, IEEE Transactions on Mobile Computing.

[55]  Wen Zhang,et al.  How much can behavioral targeting help online advertising? , 2009, WWW '09.

[56]  Paramvir Bahl,et al.  Fine-grained power modeling for smartphones using system call tracing , 2011, EuroSys '11.

[57]  Saikat Guha,et al.  Privad: Practical Privacy in Online Advertising , 2011, NSDI.

[58]  Benjamin Livshits,et al.  RePriv: Re-imagining Content Personalization and In-browser Privacy , 2011, 2011 IEEE Symposium on Security and Privacy.

[59]  Steve Hanna,et al.  Android permissions demystified , 2011, CCS '11.

[60]  Silvio Micali,et al.  Optimal Error Correction Against Computationally Bounded Noise , 2005, TCC.

[61]  Dan S. Wallach,et al.  A case of collusion: a study of the interface between ad libraries and their apps , 2013, SPSM '13.

[62]  R. Shay,et al.  Measuring the Effectiveness of Privacy Tools for Limiting Behavioral Advertising , 2012 .

[63]  Michael Carl Tschantz,et al.  Automated Experiments on Ad Privacy Settings , 2014, Proc. Priv. Enhancing Technol..

[64]  Hamed Haddadi,et al.  MobiAd: private and scalable mobile advertising , 2010, MobiArch '10.

[65]  R. Srikant,et al.  Towards a Theory of Anonymous Networking , 2010, 2010 Proceedings IEEE INFOCOM.

[66]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[67]  Krishna P. Gummadi,et al.  You are who you know: inferring user profiles in online social networks , 2010, WSDM '10.

[68]  Suman Nath,et al.  Privacy-aware personalization for mobile advertising , 2012, CCS.

[69]  Roksana Boreli,et al.  Privacy-preserving targeted mobile advertising: A Blockchain-based framework for mobile ads , 2020, J. Netw. Comput. Appl..

[70]  Yuval Ishai,et al.  Reducing the Servers’ Computation in Private Information Retrieval: PIR with Preprocessing , 2004, Journal of Cryptology.

[71]  Athina Markopoulou,et al.  NoMoATS: Towards Automatic Detection of Mobile Tracking , 2020, Proc. Priv. Enhancing Technol..

[72]  Roksana Boreli,et al.  ProfileGuard: Privacy Preserving Obfuscation for Mobile User Profiles , 2014, WPES.

[73]  Craig E. Wills,et al.  Understanding what they do with what they know , 2012, WPES '12.

[74]  David S. Evans The Online Advertising Industry: Economics, Evolution, and Privacy , 2009 .

[75]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[76]  Stefan A. Brands,et al.  Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy , 2000 .

[77]  Balachander Krishnamurthy,et al.  Privacy Leakage in Mobile Online Social Networks , 2010, WOSN.

[78]  Flávio du Pin Calmon,et al.  Privacy against statistical inference , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[79]  Marcin Sydow,et al.  Behavioural Targeting in On-Line Advertising: An Empirical Study , 2008, WISE.

[80]  Moni Naor,et al.  Oblivious transfer and polynomial evaluation , 1999, STOC '99.

[81]  Angelos Stavrou,et al.  FIRMSCOPE: Automatic Uncovering of Privilege-Escalation Vulnerabilities in Pre-Installed Apps in Android Firmware , 2020, USENIX Security Symposium.

[82]  David A. Wagner,et al.  AdDroid: privilege separation for applications and advertisers in Android , 2012, ASIACCS '12.

[83]  Fabrice Boudot,et al.  Efficient Proofs that a Committed Number Lies in an Interval , 2000, EUROCRYPT.

[84]  Philippe Golle,et al.  On the Anonymity of Home/Work Location Pairs , 2009, Pervasive.

[85]  Pierangela Samarati,et al.  Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..

[86]  Sencun Zhu,et al.  Privacy Risk Analysis and Mitigation of Analytics Libraries in the Android Ecosystem , 2020, IEEE Transactions on Mobile Computing.

[87]  Wenjie Liu,et al.  A Secure and Targeted Mobile Coupon Delivery Scheme Using Blockchain , 2018, ICA3PP.

[88]  Patrick Traynor,et al.  A Large Scale Investigation of Obfuscation Use in Google Play , 2018, ACSAC.

[89]  Xiaochun Yang,et al.  Protecting Individual Information Against Inference Attacks in Data Publishing , 2007, DASFAA.

[90]  Jiachen Yang,et al.  Blockchain-Based Sharing and Tamper-Proof Framework of Big Data Networking , 2020, IEEE Network.

[91]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[92]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[93]  Jie Li,et al.  curso: protect yourself from curse of attribute inference: a social network privacy-analyzer , 2013, DBSocial '13.

[94]  L. Sweeney Simple Demographics Often Identify People Uniquely , 2000 .

[95]  Alessio Merlo,et al.  On the (Un)Reliability of Privacy Policies in Android Apps , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[96]  Hui Zang,et al.  Anonymization of location data does not work: a large-scale measurement study , 2011, MobiCom.

[97]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[98]  Helen J. Wang,et al.  Permission Re-Delegation: Attacks and Defenses , 2011, USENIX Security Symposium.

[99]  Claude Castelluccia,et al.  Betrayed by Your Ads! - Reconstructing User Profiles from Targeted Ads , 2012, Privacy Enhancing Technologies.

[100]  D. Wetherall,et al.  A Study of Third-Party Tracking by Mobile Apps in the Wild , 2012 .

[101]  Margaret L. Kern,et al.  Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach , 2013, PloS one.

[102]  David A. Wagner,et al.  Android permissions: user attention, comprehension, and behavior , 2012, SOUPS.

[103]  Michael Carl Tschantz,et al.  Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination , 2014, ArXiv.

[104]  Suman Nath,et al.  Prefetching mobile ads: can advertising systems afford it? , 2013, EuroSys '13.

[105]  Qi Wang,et al.  On the privacy preserving properties of random data perturbation techniques , 2003, Third IEEE International Conference on Data Mining.

[106]  Nick Mathewson,et al.  Tor: The Second-Generation Onion Router , 2004, USENIX Security Symposium.

[107]  Benjamin Livshits,et al.  AdGraph: A Graph-Based Approach to Ad and Tracker Blocking , 2020, 2020 IEEE Symposium on Security and Privacy (SP).

[108]  Ying Wang,et al.  Aiming the Mobile Targets in a Cross-Cultural Context: Effects of Trust, Privacy Concerns, and Attitude , 2019, Int. J. Hum. Comput. Interact..

[109]  Elisa Bertino,et al.  Homomorphic Encryption and Applications , 2014, SpringerBriefs in Computer Science.

[110]  Siu-Ming Yiu,et al.  DroidChecker: analyzing android applications for capability leak , 2012, WISEC '12.

[111]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[112]  Wen-Guey Tzeng,et al.  Efficient k-out-of-n Oblivious Transfer Schemes , 2008, J. Univers. Comput. Sci..

[113]  Ian Goldberg,et al.  Practical PIR for electronic commerce , 2011, CCS '11.

[114]  Nina Taft,et al.  How to hide the elephant- or the donkey- in the room: Practical privacy against statistical inference for large data , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[115]  Roksana Boreli,et al.  Protecting Private Attributes in App Based Mobile User Profiling , 2020, IEEE Access.

[116]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008, RFC.

[117]  Narseo Vallina-Rodriguez,et al.  Breaking for commercials: characterizing mobile advertising , 2012, Internet Measurement Conference.

[118]  Ian Goldberg,et al.  Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.

[119]  Feng Qian,et al.  Profiling resource usage for mobile applications: a cross-layer approach , 2011, MobiSys '11.

[120]  Paul Francis,et al.  Towards Statistical Queries over Distributed Private User Data , 2012, NSDI.

[121]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[122]  Charles V. Wright,et al.  Playing Devil's Advocate: Inferring Sensitive Information from Anonymized Network Traces , 2007, NDSS.

[123]  Shlomo Argamon,et al.  Effects of Age and Gender on Blogging , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[124]  C. P. Schnorr,et al.  Efficient Identification and Signatures for Smart Cards (Abstract) , 1989, EUROCRYPT.

[125]  Christo Wilson,et al.  Tracing Information Flows Between Ad Exchanges Using Retargeted Ads , 2018, USENIX Security Symposium.

[126]  Vincent T. Y. Ng,et al.  An intelligent agent for Web advertisements , 2001, Proceedings of the Third International Symposium on Cooperative Database Systems for Advanced Applications. CODAS 2001.

[127]  George Danezis,et al.  Quantifying Location Privacy: The Case of Sporadic Location Exposure , 2011, PETS.

[128]  Aaron Roth,et al.  Selling privacy at auction , 2010, EC '11.

[129]  Myung-Sup Kim,et al.  A study on Smart-phone traffic analysis , 2011, 2011 13th Asia-Pacific Network Operations and Management Symposium.

[130]  Mihir Bellare,et al.  Batch Verification with Applications to Cryptography and Checking , 1998, LATIN.

[131]  Cecilia Mascolo,et al.  Don't kill my ads!: balancing privacy in an ad-supported mobile application market , 2012, HotMobile '12.

[132]  V. Sridhar,et al.  Event driven semantics based ad selection , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[133]  Andrew C. Simpson,et al.  Privacy‐preserving targeted mobile advertising: requirements, design and a prototype implementation , 2016, Softw. Pract. Exp..

[134]  Pierangela Samarati,et al.  Generalizing Data to Provide Anonymity when Disclosing Information , 1998, PODS 1998.

[135]  Ting-Peng Liang,et al.  Consumer Attitudes Toward Mobile Advertising: An Empirical Study , 2004, Int. J. Electron. Commer..

[136]  Laks V. S. Lakshmanan,et al.  Trajectory anonymity in publishing personal mobility data , 2011, SKDD.

[137]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[138]  Ian Goldberg,et al.  Improving the Robustness of Private Information Retrieval , 2007 .

[139]  Mihir Bellare,et al.  Fast Batch Verification for Modular Exponentiation and Digital Signatures , 1998, IACR Cryptol. ePrint Arch..

[140]  Suman Nath,et al.  Bloom Cookies: Web Search Personalization without User Tracking , 2015, NDSS.

[141]  Wen-Guey Tzeng,et al.  Efficient 1-Out-n Oblivious Transfer Schemes , 2002, Public Key Cryptography.

[142]  Arnaud Legout,et al.  ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic , 2015, MobiSys.

[143]  Prasant Mohapatra,et al.  How expensive are free smartphone apps? , 2012, MOCO.

[144]  Hamid Mozaffari,et al.  Heterogeneous Private Information Retrieval , 2020, NDSS.

[145]  Jahna Otterbacher,et al.  Inferring gender of movie reviewers: exploiting writing style, content and metadata , 2010, CIKM.

[146]  Xuxian Jiang,et al.  Unsafe exposure analysis of mobile in-app advertisements , 2012, WISEC '12.

[147]  Sharad Goel,et al.  Who Does What on the Web: A Large-Scale Study of Browsing Behavior , 2012, ICWSM.

[148]  Stefan Katzenbeisser,et al.  Enabling Privacy Preserving Mobile Advertising via Private Information Retrieval , 2017, 2017 IEEE 42nd Conference on Local Computer Networks (LCN).

[149]  Dan Boneh,et al.  An Analysis of Private Browsing Modes in Modern Browsers , 2010, USENIX Security Symposium.

[150]  Stratis Ioannidis,et al.  BlurMe: inferring and obfuscating user gender based on ratings , 2012, RecSys.

[151]  Dan S. Wallach,et al.  Longitudinal Analysis of Android Ad Library Permissions , 2013, ArXiv.

[152]  Patrick D. McDaniel,et al.  Semantically Rich Application-Centric Security in Android , 2009, 2009 Annual Computer Security Applications Conference.

[153]  Markus Jakobsson,et al.  Badvertisements: Stealthy Click-Fraud with Unwitting Accessories , 2006, J. Digit. Forensic Pract..

[154]  Stylianos Mamais Privacy-preserving and fraud-resistant targeted advertising for mobile devices , 2019 .

[155]  Paul Francis,et al.  SplitX: high-performance private analytics , 2013, SIGCOMM.

[156]  Balachander Krishnamurthy,et al.  For sale : your data: by : you , 2011, HotNets-X.

[157]  Matti Mäntymäki,et al.  Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda , 2020, Comput. Ind..

[158]  Ari Juels,et al.  Targeted Advertising ... And Privacy Too , 2001, CT-RSA.

[159]  Roksana Boreli,et al.  Characterising user targeting for in-App Mobile Ads , 2014, 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[160]  Divyakant Agrawal,et al.  Detectives: detecting coalition hit inflation attacks in advertising networks streams , 2007, WWW '07.

[161]  Carmela Troncoso,et al.  PIR-Tor: Scalable Anonymous Communication Using Private Information Retrieval , 2011, USENIX Security Symposium.

[162]  Roksana Boreli,et al.  Information leakage through mobile analytics services , 2014, HotMobile.

[163]  Benjamin C. M. Fung,et al.  Walking in the crowd: anonymizing trajectory data for pattern analysis , 2009, CIKM.

[164]  Milad Shokouhi,et al.  Inferring the demographics of search users: social data meets search queries , 2013, WWW.

[165]  Lujo Bauer,et al.  (Do Not) Track Me Sometimes: Users’ Contextual Preferences for Web Tracking , 2016, Proc. Priv. Enhancing Technol..

[166]  Philippe Gaborit,et al.  A Lattice-Based Computationally-Efficient Private Information Retrieval Protocol , 2007, IACR Cryptol. ePrint Arch..

[167]  Shashi Shekhar,et al.  AdSplit: Separating Smartphone Advertising from Applications , 2012, USENIX Security Symposium.

[168]  V. Virtanen,et al.  An Empirical Study of the Drivers of Consumer Acceptance of Mobile Advertising , 2007 .

[169]  Arjun Mukherjee,et al.  Improving Gender Classification of Blog Authors , 2010, EMNLP.

[170]  Helen Nissenbaum,et al.  Adnostic: Privacy Preserving Targeted Advertising , 2010, NDSS.

[171]  Ian Goldberg,et al.  Constant-Size Commitments to Polynomials and Their Applications , 2010, ASIACRYPT.

[172]  Alastair R. Beresford,et al.  MockDroid: trading privacy for application functionality on smartphones , 2011, HotMobile '11.

[173]  Moni Naor,et al.  Private Information Retrieval by Keywords , 1998, IACR Cryptol. ePrint Arch..

[174]  Elaine Shi,et al.  Privacy-Preserving Aggregation of Time-Series Data , 2011, NDSS.

[175]  Hua Li,et al.  Demographic prediction based on user's browsing behavior , 2007, WWW '07.

[176]  Alexandre V. Evfimievski,et al.  Limiting privacy breaches in privacy preserving data mining , 2003, PODS.

[177]  Aniket Kate,et al.  ObliviAd: Provably Secure and Practical Online Behavioral Advertising , 2012, 2012 IEEE Symposium on Security and Privacy.

[178]  Swarat Chaudhuri,et al.  A Study of Android Application Security , 2011, USENIX Security Symposium.