On Explainability in AI-Solutions: A Cross-Domain Survey

[1]  Geoffrey J. Gordon,et al.  Artificial intelligence in medicine , 1989, Springer US.

[2]  S. Reddy Explainability and artificial intelligence in medicine. , 2022, The Lancet. Digital health.

[3]  Luca Longo,et al.  Notions of explainability and evaluation approaches for explainable artificial intelligence , 2021, Inf. Fusion.

[4]  Andreas Holzinger,et al.  Toward Human–AI Interfaces to Support Explainability and Causability in Medical AI , 2021, Computer.

[5]  Markus Reischl,et al.  Night-to-Day: Online Image-to-Image Translation for Object Detection Within Autonomous Driving by Night , 2021, IEEE Transactions on Intelligent Vehicles.

[6]  Plamen P. Angelov,et al.  Explainable artificial intelligence: an analytical review , 2021, WIREs Data Mining Knowl. Discov..

[7]  Zixing Zhang,et al.  Artificial Intelligence Internet of Things for the Elderly: From Assisted Living to Health-Care Monitoring , 2021, IEEE Signal Processing Magazine.

[8]  Longbing Cao,et al.  AI in Finance: Challenges, Techniques, and Opportunities , 2021, ACM Comput. Surv..

[9]  Donghee Shin,et al.  The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI , 2021, Int. J. Hum. Comput. Stud..

[10]  Yan Wang,et al.  O3ERS: An explainable recommendation system with online learning, online recommendation, and online explanation , 2021, Inf. Sci..

[11]  Mark O. Riedl,et al.  Expanding Explainability: Towards Social Transparency in AI systems , 2021, CHI.

[12]  Sotiris Kotsiantis,et al.  Explainable AI: A Review of Machine Learning Interpretability Methods , 2020, Entropy.

[13]  Alessandro Blasimme,et al.  Explainability for artificial intelligence in healthcare: a multidisciplinary perspective , 2020, BMC Medical Informatics and Decision Making.

[14]  Tarek R. Besold,et al.  A historical perspective of explainable Artificial Intelligence , 2020, WIREs Data Mining Knowl. Discov..

[15]  Vaishak Belle,et al.  Principles and Practice of Explainable Machine Learning , 2020, Frontiers in Big Data.

[16]  Timothy A. Sands Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV) , 2020, Journal of Marine Science and Engineering.

[17]  Thomas Ploug,et al.  The four dimensions of contestable AI diagnostics - A patient-centric approach to explainable AI , 2020, Artif. Intell. Medicine.

[18]  Amitojdeep Singh,et al.  Explainable Deep Learning Models in Medical Image Analysis , 2020, J. Imaging.

[19]  James R. Eagan,et al.  Flexible and Context-Specific AI Explainability: A Multidisciplinary Approach , 2020, SSRN Electronic Journal.

[20]  Weihua Zhuang,et al.  AI-Assisted Network-Slicing Based Next-Generation Wireless Networks , 2020, IEEE Open Journal of Vehicular Technology.

[21]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[22]  Guang-Zhong Yang,et al.  XAI—Explainable artificial intelligence , 2019, Science Robotics.

[23]  Mark Coeckelbergh,et al.  Artificial Intelligence, Responsibility Attribution, and a Relational Justification of Explainability , 2019, Science and Engineering Ethics.

[24]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[25]  Ankur Taly,et al.  Explainable machine learning in deployment , 2019, FAT*.

[26]  Amit Dhurandhar,et al.  One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques , 2019, ArXiv.

[27]  Wei Jiang,et al.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks , 2019, 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC).

[28]  Yanlin Yue,et al.  AI-Enhanced Offloading in Edge Computing: When Machine Learning Meets Industrial IoT , 2019, IEEE Network.

[29]  Joana Hois,et al.  How to Achieve Explainability and Transparency in Human AI Interaction , 2019, HCI.

[30]  Ankur Taly,et al.  Explainable AI in Industry , 2019, KDD.

[31]  Hans D. Schotten,et al.  Anomaly-based Intrusion Detection in Industrial Data with SVM and Random Forests , 2019, 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[32]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[33]  Yongfeng Zhang,et al.  Dynamic Explainable Recommendation Based on Neural Attentive Models , 2019, AAAI.

[34]  Senka Krivic,et al.  Towards Explainable AI Planning as a Service , 2019, ArXiv.

[35]  Ribana Roscher,et al.  Explainable Machine Learning for Scientific Insights and Discoveries , 2019, IEEE Access.

[36]  Raghu N. Kacker,et al.  An Application of Combinatorial Methods for Explainability in Artificial Intelligence and Machine Learning (Draft) , 2019 .

[37]  Anna Goldenberg,et al.  What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use , 2019, MLHC.

[38]  Qian Yang,et al.  Designing Theory-Driven User-Centric Explainable AI , 2019, CHI.

[39]  Georg Langs,et al.  Causability and explainability of artificial intelligence in medicine , 2019, WIREs Data Mining Knowl. Discov..

[40]  Ahmad Y. Javaid,et al.  Evolving Rule-Based Explainable Artificial Intelligence for Unmanned Aerial Vehicles , 2019, IEEE Access.

[41]  Bhavya Kailkhura,et al.  Reliable and explainable machine-learning methods for accelerated material discovery , 2019, npj Computational Materials.

[42]  Gary Klein,et al.  Metrics for Explainable AI: Challenges and Prospects , 2018, ArXiv.

[43]  Eric D. Ragan,et al.  A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems , 2018, ACM Trans. Interact. Intell. Syst..

[44]  Dirk Neumann,et al.  Transfer Learning versus Multiagent Learning regarding Distributed Decision-Making in Highway Traffic , 2018, ATT@IJCAI.

[45]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[46]  Hani Hagras,et al.  Toward Human-Understandable, Explainable AI , 2018, Computer.

[47]  Freddy Lécué,et al.  Explainable AI: The New 42? , 2018, CD-MAKE.

[48]  Hans D. Schotten,et al.  Evaluation of Machine Learning-based Anomaly Detection Algorithms on an Industrial Modbus/TCP Data Set , 2018, ARES.

[49]  Andreas Holzinger,et al.  From Machine Learning to Explainable AI , 2018, 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA).

[50]  Tommaso Di Noia,et al.  Knowledge-aware Autoencoders for Explainable Recommender Systems , 2018, DLRS@RecSys.

[51]  Xu Chen,et al.  Explainable Recommendation: A Survey and New Perspectives , 2018, Found. Trends Inf. Retr..

[52]  Alun D. Preece,et al.  Asking 'Why' in AI: Explainability of intelligent systems - perspectives and challenges , 2018, Intell. Syst. Account. Finance Manag..

[53]  Xu Chen,et al.  Learning over Knowledge-Base Embeddings for Recommendation , 2018, Algorithms.

[54]  Christian Biemann,et al.  What do we need to build explainable AI systems for the medical domain? , 2017, ArXiv.

[55]  Wei Jiang,et al.  Intelligent network management for 5G systems: The SELFNET approach , 2017, 2017 European Conference on Networks and Communications (EuCNC).

[56]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[57]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[58]  Dietmar Kunz,et al.  Channel assignment for cellular radio using simulated annealing , 1993 .

[59]  F. Longo,et al.  Applications of ML/AI for Decision-Intensive Tasks in Production Planning and Control , 2021, ISM.

[60]  Marta Caro-Mart́ınez,et al.  Conceptual Modeling of Explainable Recommender Systems: An Ontological Formalization to Guide Their Design and Development , 2021, J. Artif. Intell. Res..

[61]  Amit Dhurandhar,et al.  AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models , 2020, J. Mach. Learn. Res..

[62]  F. Sobieczky,et al.  Explainability of AI-predictions based on psychological profiling , 2020, ISM.

[63]  Wojciech Samek,et al.  Explainable AI: Interpreting, Explaining and Visualizing Deep Learning , 2019, Explainable AI.

[64]  Olfa Nasraoui,et al.  Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems , 2018, Human and Machine Learning.