Nanostructured films formed on Zn during anodic oxidation in different carbonate-based electrolytes

[1]  T. Uchacz,et al.  Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting , 2022, Electrochimica Acta.

[2]  S. M. Hamad,et al.  Synthesis, properties and uses of ZnO nanorods: a mini review , 2021, International Nano Letters.

[3]  M. Usman,et al.  A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO , 2021, Frontiers in Materials.

[4]  R. M. Fernández-Domene,et al.  Control on the morphology and photoelectrocatalytic properties of ZnO nanostructures by simple anodization varying electrolyte composition , 2020 .

[5]  C. Donley,et al.  Introduction to x-ray photoelectron spectroscopy , 2020, Journal of Vacuum Science & Technology A.

[6]  Inkyu Park,et al.  Low-temperature large-area fabrication of ZnO nanowires on flexible plastic substrates by solution-processible metal-seeded hydrothermal growth , 2020, Nano Convergence.

[7]  M. A. Shah,et al.  Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization , 2020 .

[8]  Yuxin Zhang,et al.  Facile constructing ZnO/ZnCO3 heterojunction for high-performance photocatalytic NO oxidation and reaction pathway study , 2020, Journal of Materials Science: Materials in Electronics.

[9]  J. García-Antón,et al.  Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting , 2020 .

[10]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[11]  S. Virtanen,et al.  Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications , 2019, Applications of Surface Science.

[12]  Stacy Gates-Rector,et al.  The Powder Diffraction File: a quality materials characterization database , 2019, Powder Diffraction.

[13]  D. Zagorac,et al.  Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features , 2019, Journal of applied crystallography.

[14]  Joe Briscoe,et al.  ZnO nanowires for solar cells: a comprehensive review , 2019, Nanotechnology.

[15]  R. Socha,et al.  Electrochemical synthesis and characterization of dark nanoporous zinc oxide films , 2019, Electrochimica Acta.

[16]  B. Witkowski Applications of ZnO Nanorods and Nanowires - A Review , 2018, Acta Physica Polonica A.

[17]  B. Szczygieł,et al.  XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions , 2018, Journal of Spectroscopy.

[18]  S. Komarneni,et al.  Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review , 2018 .

[19]  M. Gajewska,et al.  High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment , 2017 .

[20]  Claudia Barolo,et al.  ZnO Nanowire Application in Chemoresistive Sensing: A Review , 2017, Nanomaterials.

[21]  Leszek Zaraska,et al.  Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes , 2017 .

[22]  M. Legallais,et al.  Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires , 2017 .

[23]  J. Cen,et al.  Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation , 2017 .

[24]  Nageh K. Allam,et al.  Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes , 2016 .

[25]  Oomman K Varghese,et al.  Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. , 2016, Nano letters.

[26]  Z. Hassan,et al.  Rapid Formation and Evolution of Anodized-Zn Nanostructures in NaHCO3 Solution , 2016 .

[27]  K. Katakura,et al.  Electrochemical Behaviors of Zn Anode in Carbonate-based Aqueous Solutions , 2015 .

[28]  D. Mattia,et al.  Hierarchical 3D ZnO nanowire structures via fast anodization of zinc , 2015 .

[29]  J. D. Strycker,et al.  Effect of hydrogen carbonate and chloride on zinc corrosion investigated by a scanning flow cell system , 2015 .

[30]  Mustapha Sadki,et al.  The HighScore suite , 2014, Powder Diffraction.

[31]  Magdalena Skompska,et al.  Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates–a Review , 2014 .

[32]  V. Russo,et al.  Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide , 2013, 1311.7028.

[33]  H. Hong,et al.  Biomedical applications of zinc oxide nanomaterials. , 2013, Current molecular medicine.

[34]  JiYoung Park,et al.  Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization , 2013 .

[35]  A. R. Daud,et al.  XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods , 2013 .

[36]  JiYoung Park,et al.  Fabrication of hierarchical ZnO nanostructures for dye-sensitized solar cells , 2012 .

[37]  V. N. Solomakha,et al.  Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide , 2010 .

[38]  Veaceslav Ursaki,et al.  Synthesis and characterization of ZnO nanowires for nanosensor applications , 2010 .

[39]  Lianmao Peng,et al.  Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization , 2010 .

[40]  C. Giacovazzo,et al.  EXPO2009: structure solution by powder data in direct and reciprocal space , 2009 .

[41]  R. Frost,et al.  Thermal analysis of smithsonite and hydrozincite , 2008 .

[42]  R. Frost,et al.  Raman spectroscopy of smithsonite , 2008 .

[43]  Ray L. Frost,et al.  Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite , 2007 .

[44]  Jinhui Song,et al.  Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices , 2007 .

[45]  Gyu-Chul Yi,et al.  ZnO nanorods: synthesis, characterization and applications , 2005 .

[46]  A. Shchukarev,et al.  XPS Study of group IA carbonates , 2004 .

[47]  Gaojie Xu,et al.  Size dependence of electron-phonon coupling in ZnO nanowires , 2004 .

[48]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[49]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[50]  M. Dubinin,et al.  Comments on the limits of applicability of the mechanism of capillary condensation , 1969 .

[51]  J. H. de Boer,et al.  Studies on pore systems in catalysts: V. The t method , 1965 .

[52]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .