meso-Tritolylcorrole-Functionalized Single-walled Carbon Nanotube DonorAcceptor Nanocomposites for NO2 Detection

meso-Tritolylcorrole-functionalized single-walled carbon nanotubes (TTC-SWNT) donor-acceptor (D–A) heterojunction nanocomposite film was fabricated on a polycarbonate membrane through filtration and non-covalent functionalization, providing an excellent sensing platform with low-cost, high flexibility and good gas accessibility. The TTC-SWNTs nanocomposite displays a fast and sensitive response to nitrogen dioxide with a limit of detection of 10 ppb (S/N = 3). The sensing response was significantly amplified compared to the unmodified one, which was ascribed to a D–A heterojunction at the interface between electron donor TTC and electron acceptor SWNTs. This study provides a simple route to fabricate low-cost and highly sensitive donor-acceptor nanocomposite-based gas sensors.

[1]  Uwe Lampe,et al.  Thin-film gas sensors based on semiconducting metal oxides , 1995 .

[2]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[3]  D. Zhao,et al.  Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection , 2007 .

[4]  C. Brückner,et al.  Synthesis and atructure of [meso-triarylcorrolato]silver(III). , 2003, Inorganic chemistry.

[5]  D. Guldi,et al.  Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes. , 2010, Journal of the American Chemical Society.

[6]  M. Prato,et al.  Carbon nanotubes in electron donor-acceptor nanocomposites. , 2005, Accounts of chemical research.

[7]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[8]  J. Tour,et al.  Covalent chemistry of single-wall carbon nanotubes , 2002 .

[9]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[10]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[11]  T. Chou,et al.  Nano-crystalline tungsten oxide NO2 sensor , 2003 .

[12]  Patrick W. Fowler,et al.  Carbon cylinders: a class of closed-shell clusters , 1990 .

[13]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[14]  Manoj K. Ram,et al.  NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite , 2005 .

[15]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[16]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[17]  C. Collier,et al.  Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. , 2005, The journal of physical chemistry. B.

[18]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[19]  G. F. Ward,et al.  An assessment of the luminol chemiluminescence technique for measurement of NO2 in ambient air , 1990 .

[20]  J. Breuer,et al.  Technical considerations for inhaled nitric oxide therapy: time response to nitric oxide dosing changes and formation of nitrogen dioxide , 1997, European Journal of Pediatrics.

[21]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[22]  Yugang Sun,et al.  High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles , 2007 .

[23]  Z. Gross,et al.  The First Direct Synthesis of Corroles from Pyrrole. , 1999, Angewandte Chemie.

[24]  T. Torres,et al.  Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. , 2007, Chemical communications.

[25]  Abhik Ghosh,et al.  Electronic Structure of Gallium, Copper, and Nickel Complexes of Corrole. High-Valent Transition Metal Centers versus Noninnocent Ligands , 2000 .

[26]  Hirofumi Tanaka,et al.  Porphyrin Molecular Nanodevices Wired Using Single‐Walled Carbon Nanotubes , 2006 .

[27]  Marcus D. Lay,et al.  Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. , 2008, Analytica chimica acta.

[28]  J. F. Stoddart,et al.  A tunable photosensor. , 2008, Journal of the American Chemical Society.

[29]  Francis D'Souza,et al.  Donor−Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer , 2007 .

[30]  Hiroto Murakami,et al.  Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion , 2002 .

[31]  Michele Penza,et al.  NOX GAS SENSING CHARACTERISTICS OF WO3 THIN FILMS ACTIVATED BY NOBLE METALS (PD, PT, AU) LAYERS , 1998 .

[32]  D. Modarelli,et al.  Photophysical properties of a series of free-base corroles. , 2005, The journal of physical chemistry. A.

[33]  René Lalauze,et al.  Gas detection for automotive pollution control , 1999 .

[34]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[35]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[36]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[37]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[38]  Mikhail Kozlov,et al.  Flexible carbon nanotube sensors for nerve agent simulants , 2006, Nanotechnology.

[39]  C. N. R. Rao,et al.  Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires , 2006 .

[40]  Z. Gross High-valent corrole metal complexes , 2001, JBIC Journal of Biological Inorganic Chemistry.

[41]  T. Torres,et al.  Phthalocyanines: from outstanding electronic properties to emerging applications. , 2008, Chemical record.

[42]  Carles Cané,et al.  Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors , 1999 .

[43]  R. Chitta,et al.  Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents. , 2008, Journal of the American Chemical Society.