Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor

[1]  J. Sobota,et al.  Probing topological phase transitions using high-harmonic generation , 2022, Nature Photonics.

[2]  F. Evers,et al.  Tunable non-integer high-harmonic generation in a topological insulator , 2021, Nature.

[3]  J. Orenstein,et al.  Topology and Symmetry of Quantum Materials via Nonlinear Optical Responses , 2021 .

[4]  J. Kong,et al.  Colossal switchable photocurrents in topological Janus transition metal dichalcogenides , 2021, npj Computational Materials.

[5]  Yang Zhang,et al.  Terahertz detection based on nonlinear Hall effect without magnetic field , 2021, Proceedings of the National Academy of Sciences.

[6]  Xiaofeng Qian,et al.  Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials , 2020, npj Computational Materials.

[7]  Zhi‐zhan Xu,et al.  High-harmonic generation from topological surface states , 2020, Nature Physics.

[8]  J. Kong,et al.  Designing artificial two-dimensional landscapes via atomic-layer substitution , 2020, Proceedings of the National Academy of Sciences.

[9]  Xuewen Wang,et al.  Terahertz Surface Emission from MoSe2 at Monolayer Limit. , 2020, ACS applied materials & interfaces.

[10]  Y. Tokura,et al.  Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2 , 2020, Nature Communications.

[11]  Jian Zhou,et al.  Giant Photonic Response of Mexican-Hat Topological Semiconductors for Mid-Infrared to THz Applications. , 2020, The journal of physical chemistry letters.

[12]  Jian Zhou,et al.  Pure spin photocurrent in non-centrosymmetric crystals: bulk spin photovoltaic effect , 2020, Nature Communications.

[13]  Chaoxing Liu,et al.  Tuning the Chern number in quantum anomalous Hall insulators , 2020, Nature.

[14]  J. Hone,et al.  Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices , 2020, Science.

[15]  R. Lewis A review of terahertz detectors , 2019, Journal of Physics D: Applied Physics.

[16]  Xiaodong Xu,et al.  Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 , 2019, Nature.

[17]  J. Lai,et al.  Nonlinear photoresponse of type-II Weyl semimetals , 2018, Nature Materials.

[18]  T. Heinz,et al.  Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission , 2019, Science Advances.

[19]  Xiaofeng Qian,et al.  Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials , 2018, Science Advances.

[20]  Qian Wang,et al.  Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers , 2018, Nature Materials.

[21]  K. Kokh,et al.  Subcycle observation of lightwave-driven Dirac currents in a topological surface band , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[22]  Yingchun Cheng,et al.  Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. , 2018, Small.

[23]  M. Bonn,et al.  Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions , 2018, Nature.

[24]  Ying Ran,et al.  Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal , 2017, Nature Materials.

[25]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[26]  Yulin Chen,et al.  Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.

[27]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[28]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[29]  H. B. Weber,et al.  Light-field-driven currents in graphene , 2016, Nature.

[30]  Tony F. Heinz,et al.  High-harmonic generation from an atomically thin semiconductor , 2016, Nature Physics.

[31]  T. Morimoto,et al.  Topological nature of nonlinear optical effects in solids , 2015, Science Advances.

[32]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[33]  A. Cordova,et al.  Probing the Nature of the Active Phase of Molybdenum-Supported Catalysts for the Direct Synthesis of Methylmercaptan from Syngas and H2S , 2015 .

[34]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[35]  Zhiwen Liu,et al.  Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers , 2014, Scientific Reports.

[36]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[37]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[38]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[39]  P. Holloway,et al.  High-efficiency light-emitting devices based on quantum dots with tailored nanostructures , 2013, Nature Photonics.

[40]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[41]  T. Murphy,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2013, Nature nanotechnology.

[42]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[43]  Pierre Agostini,et al.  Observation of high-order harmonic generation in a bulk crystal , 2011 .

[44]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[45]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[46]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .