Groundwater‐controlled valley networks and the decline of surface runoff on early Mars

[1] Fluvial erosion on early Mars was dominated by valley networks created through a combination of groundwater processes and surface runoff. A reduced greenhouse effect due to CO 2 loss, together with a declining geothermal heat flux, promoted the growth of a cryosphere and a Hesperian hydrologic regime dominated by outflow channel formation. We test the hypothesis that the transition from valley network to outflow channel formation was preceded by a more subtle evolution characterized by a weakening of surface runoff, leaving groundwater processes as the dominant, final source of valley network erosion. Our hypothesis, supported by a terrestrial analog in the Atacama desert of Chile, is related to the groundwater sapping reactivation hypothesis for densely dissecting highland valley networks on Mars suggested by Baker and Partridge in 1986 and focuses on the age analysis of large, sparsely dissecting valley networks such as Nanedi Valles, Nirgal Vallis, valleys in fretted terrain, and tributaries of outflow channels and Valles Marineris chasmata. We find that these features are consistently late Noachian to Hesperian in age, younger than Noachian densely dissecting dendritic valley networks in the southern highlands. In the Tharsis region the observation of dense and sparse valley network morphologies on Hesperian terrain suggests that while surface runoff gave way to groundwater processes consistent with our hypothesis, the transition may have occurred later than elsewhere on the planet. The volcanic nature of Tharsis suggests that geothermal heat and volatile production led to episodically higher volumes of surface runoff in this region during the Hesperian.

[1]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[2]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[3]  A. Howard,et al.  Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins , 2004 .

[4]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[5]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[6]  Christophe Delacourt,et al.  Evidence for Precipitation on Mars from Dendritic Valleys in the Valles Marineris Area , 2004, Science.

[7]  B. Isacks,et al.  Groundwater-sapping origin for the giant quebradas of northern Chile , 2004 .

[8]  K. Harrison,et al.  Tharsis recharge: A source of groundwater for Martian outflow channels , 2004 .

[9]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[10]  William E. Dietrich,et al.  Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .

[11]  J. Head,et al.  Basal melting of snow on early Mars: A possible origin of some valley networks , 2003 .

[12]  A. McEwen Secondary Cratering on Mars: Implications for Age Dating and Surface Properties , 2003 .

[13]  Mark I. Richardson,et al.  On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes , 2003 .

[14]  Kenneth L. Tanaka,et al.  Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data , 2003 .

[15]  A. Colaprete,et al.  Environmental Effects of Large Impacts on Mars , 2002, Science.

[16]  Sean C. Solomon,et al.  Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution , 2002 .

[17]  M. Carr Elevations of water-worn features on Mars: Implications for circulation of groundwater , 2002 .

[18]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[19]  J. Grant,et al.  Drainage evolution in the Margaritifer Sinus region, Mars , 2002 .

[20]  Alan D. Howard,et al.  Drainage basin evolution in Noachian Terra Cimmeria, Mars , 2002 .

[21]  T. Parker,et al.  The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains , 2001 .

[22]  M. Carr Mars Global Surveyor observations of Martian fretted terrain , 2001 .

[23]  Roger J. Phillips,et al.  Morphometric measurements of martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data , 2001 .

[24]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[25]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[26]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[27]  B. Jakosky,et al.  Mars D/H: Implications for Volatile Evolution and Climate History , 2001 .

[28]  R. Phillips,et al.  Evidence for extensive denudation of the Martian highlands , 2001 .

[29]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[30]  N. Cabrol,et al.  Composition of the drainage network on early Mars , 2001 .

[31]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[32]  M. Malin,et al.  Meter-Scale Characteristics of Martian Channels and Valleys , 2000 .

[33]  J. Kasting,et al.  Influence of carbon dioxide clouds on early martian climate. , 2000, Icarus.

[34]  G. Mcgill Crustal history of north central Arabia Terra, Mars , 2000 .

[35]  H. Hoshino,et al.  Hydrogen‐isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphere , 2000, Meteoritics & planetary science.

[36]  R. Anderson,et al.  Pulses of Magmatic Activity Through Time: Potential Triggers for Climatic Variations on Mars , 2000 .

[37]  M. Malin,et al.  Flow rates and duration within Kasei Valles, Mars: Implications for the formation of a Martian Ocean , 1999 .

[38]  G. Mcgill,et al.  Evidence for igneous activity and implications for the origin of a fretted channel in southern Ismenius Lacus, Mars , 1998 .

[39]  R. Haberle Early Mars Climate Models , 1998 .

[40]  Nathalie A. Cabrol,et al.  Duration of the Ma'adim Vallis/Gusev Crater Hydrogeologic System, Mars , 1998 .

[41]  Nathalie A. Cabrol,et al.  Ma'adim Vallis Evolution: Geometry and Models of Discharge Rate , 1998 .

[42]  M. Carr,et al.  Martian drainage densities , 1997 .

[43]  J. Grant,et al.  Degradation of selected terrestrial and Martian impact craters , 1993 .

[44]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[45]  Robert E. Johnson,et al.  Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .

[46]  J. Kasting,et al.  CO2 condensation and the climate of early Mars. , 1991, Icarus.

[47]  D. Turcotte,et al.  Origin and thermal evolution of Mars. , 1990 .

[48]  T. Parker,et al.  Transitional morphology in West Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary , 1989 .

[49]  H. J. Melosh,et al.  Impact erosion of the primordial atmosphere of Mars , 1989, Nature.

[50]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[51]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[52]  M. Carr Water on Mars , 1987, Nature.

[53]  R. Kochel,et al.  Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys , 1986 .

[54]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[55]  V. Baker,et al.  Small Martian valleys: Pristine and degraded morphology , 1986 .

[56]  M. Carr,et al.  Possible precipitation of ice at low latitudes of Mars during periods of high obliquity , 1985, Nature.

[57]  M. Malin,et al.  Sapping processes and the development of theater-headed valley networks on the Colorado Plateau , 1985 .

[58]  M. Carr,et al.  Martian channels and valleys: Their characteristics, distribution, and age , 1981 .

[59]  P. Masson Contribution to the structural interpretation of the Valles Marineris-Noctis Labyrinthus-Claritas Fossae regions of Mars , 1980 .

[60]  Michael H. Carr,et al.  Formation of Martian flood features by release of water from confined aquifers , 1979 .

[61]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[62]  Harold Masursky,et al.  An overview of geological results from Mariner 9 , 1973 .

[63]  D. J. Milton Water and processes of degradation in the Martian landscape , 1973 .

[64]  R. Sharp Mars: Troughed terrain , 1973 .

[65]  J. Tóth A Theoretical Analysis of Groundwater Flow in Small Drainage Basins , 1963 .

[66]  J. A. Grant,et al.  Climate Change from the Mars Exploration Rover Landing Sites: From Wet in the Noachian to Dry and Desiccating Since the Hesperian , 2005 .

[67]  J. Moore,et al.  A Noachian/Hesperian Hiatus and Erosive Reactivation of Martian Valley Networks , 2005 .

[68]  R. Jaumann,et al.  Nirgal Vallis: Evidence for extensive sapping , 2002 .

[69]  William K. Hartmann,et al.  The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System , 2000 .

[70]  A. McEwen,et al.  The canyon system on Mars , 1992 .

[71]  D. H. Scott,et al.  Geologic map of the Valles Marineris region, Mars , 1991 .

[72]  Clark R. Chapman,et al.  Cratering and obliteration history of Mars , 1977 .

[73]  D. Pieri Distribution of small channels on the Martian surface , 1976 .