Fractional order description of DNA

Abstract This study addresses the deoxyribonucleic acid (DNA) and proposes a procedure based on the association of statistics, information theory, signal processing, Fourier analysis and fractional calculus for describing fundamental characteristics of the DNA. In a first phase the 24 chromosomes of the Human are evaluated. In a second phase, 10 chromosomes for different species are also processed and the results compared. The results reveal invariance in the description and close resemblances with fractional Brownian motion.

[1]  Chun-Feng Li,et al.  Rescaled-range and power spectrum analyses on well-logging data , 2003 .

[2]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[3]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2003, Signal Process..

[4]  P. Vandergheynst,et al.  Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. , 2000, Journal of theoretical biology.

[5]  José António Tenreiro Machado,et al.  Fractional signals and systems , 2011, Signal Process..

[6]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[7]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[8]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[9]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[12]  S. Tiwari,et al.  Prediction of probable genes by Fourier analysis of genomic sequences , 1997, Comput. Appl. Biosci..

[13]  R. Voss,et al.  Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. , 1992, Physical review letters.

[14]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[15]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[16]  Sung-Il Yang,et al.  Codon and amino-acid distribution in DNA , 2005 .

[17]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[18]  Clara-Mihaela Ionescu,et al.  The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics , 2013 .

[19]  Paolo Grigolini,et al.  A theory of 1/f noise in human cognition , 2009 .

[20]  José António Tenreiro Machado,et al.  Entropy analysis of the DNA code dynamics in human chromosomes , 2011, Comput. Math. Appl..

[21]  Vera Afreixo,et al.  Fourier analysis of symbolic data: A brief review , 2004, Digit. Signal Process..

[22]  Murad S. Taqqu,et al.  A seasonal fractional ARIMA Model applied to the Nile River monthly flows at Aswan , 2000 .

[23]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[26]  Robin De Keyser,et al.  Relations Between Fractional-Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary Disease , 2009, IEEE Transactions on Biomedical Engineering.

[27]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[29]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[30]  Chun-Nan Lin,et al.  Clustering Analysis for Bacillus Genus Using Fourier Transform and Self-Organizing Map , 2006, ICONIP.

[31]  Manuel Duarte Ortigueira,et al.  A Fractional Linear System View of the Fractional Brownian Motion , 2004 .

[32]  G.T. Zhou,et al.  A fourier product method for detecting approximate TANDEM repeats in DNA , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[33]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[34]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2015, Signal Process..

[35]  Yu Zhou,et al.  Distinguish Coding And Noncoding Sequences In A Complete Genome Using Fourier Transform , 2007, Third International Conference on Natural Computation (ICNC 2007).

[36]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[37]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[38]  M. Ortigueira,et al.  On the relation between the fractional Brownian motion and the fractional derivatives , 2008 .

[39]  J Chakrabarti,et al.  Codon distributions in DNA. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[41]  José António Tenreiro Machado,et al.  Symbolic Fractional Dynamics , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[42]  Ivan Nourdin,et al.  Selected Aspects of Fractional Brownian Motion , 2013 .

[43]  Wosuk Ro,et al.  1/f Noise analysis of songs in various genre of music , 2009 .

[44]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[45]  J. A. Tenreiro Machado,et al.  And I say to myself: “What a fractional world!” , 2011 .

[46]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[47]  Young-Fo Chang,et al.  A relationship between Hurst exponents of slip and waiting time data of earthquakes , 2008 .

[48]  Changchuan Yin,et al.  A Fourier Characteristic of Coding Sequences: Origins and a Non-Fourier Approximation , 2005, J. Comput. Biol..

[49]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[50]  Helen Pearson,et al.  Genetics: What is a gene? , 2006, Nature.

[51]  Vera Afreixo,et al.  Spectrum and symbol distribution of nucleotide sequences. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Paul J. Kushner,et al.  On the origins of temporal power‐law behavior in the global atmospheric circulation , 2009 .

[53]  Demetris Koutsoyiannis,et al.  Climate change, the Hurst phenomenon, and hydrological statistics , 2003 .

[54]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[56]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[57]  José António Tenreiro Machado,et al.  On the DNA of Eleven mammals , 2012, Int. J. Bifurc. Chaos.

[58]  José António Tenreiro Machado,et al.  Fractional Order Generalized Information , 2014, Entropy.

[59]  José António Tenreiro Machado,et al.  Fractional calculus applications in signals and systems , 2006, Signal Processing.

[60]  J. T. Machado Fractional-Order Fourier Analysis of Human DNA , 2012 .

[61]  Andrea Király,et al.  Stochastic modeling of daily temperature fluctuations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  J. A. Tenreiro Machado,et al.  Fractional dynamics in DNA , 2011 .

[63]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .