Application of PROMICE Q‐Transect in Situ Accumulation and Ablation Measurements (2000–2017) to Constrain Mass Balance at the Southern Tip of the Greenland Ice Sheet

[1]  X. Fettweis,et al.  Hybrid inventory, gravimetry and altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic , 2014 .

[2]  C. J. P. P. Smeets,et al.  The Parameterisation of Scalar Transfer over Rough Ice , 2008 .

[3]  Xavier Fettweis,et al.  Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model , 2016 .

[4]  C. Bøggild,et al.  Significant thinning of the south Greenland Ice Sheet margin , 2006 .

[5]  M. Flanner,et al.  A new albedo parameterization for use in climate models over the Antarctic ice sheet , 2011 .

[6]  Laurence C. Smith,et al.  A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007) , 2010 .

[7]  E. Brun,et al.  Impact Of Snow Drift On The Antarctic Ice Sheet Surface Mass Balance: Possible Sensitivity To Snow-Surface Properties , 2001 .

[8]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[9]  M. R. van den Broeke,et al.  An improved semi-empirical model for the densification of Antarctic firn , 2011 .

[10]  Chris Derksen,et al.  Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes , 2010 .

[11]  X. Fettweis,et al.  Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991 , 2005 .

[12]  R. Fausto,et al.  Ablation observations for 2008-2011 from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) , 1969 .

[13]  C. Mayer,et al.  Glacier retreat, mass‐balance and thinning: sermilik glacier, south greenland , 2004 .

[14]  J. Box,et al.  Regional climate-model performance in Greenland firn derived from in situ observations , 1969 .

[15]  H. Gallée,et al.  Development of a Three-Dimensional Meso-γ Primitive Equation Model: Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica , 1994 .

[16]  Philippe Huybrechts,et al.  A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent , 2014 .

[17]  M. R. van den Broeke,et al.  A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps , 2017, Nature Communications.

[18]  X. Fettweis,et al.  Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012) , 2014, Journal of Glaciology.

[19]  Luis Kornblueh,et al.  The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .

[20]  Søren Rysgaard,et al.  Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012)*,+ , 2015 .

[21]  Helgi Björnsson,et al.  The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations , 2017 .

[22]  M. Caffee,et al.  Rapid last-deglacial thinning and retreat of the marine-terminating southwestern Greenland ice sheet , 2015 .

[23]  K. Steffen,et al.  Greenland precipitation trends in a long‐term instrumental climate context (1890–2012): evaluation of coastal and ice core records , 2015 .

[24]  M. R. van den Broeke,et al.  Twenty-one years of mass balance observations along the K-transect, West Greenland , 2012 .

[25]  F. Martin Ralph,et al.  Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889 , 2014 .

[26]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[27]  T. Tanikawa,et al.  Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012 , 2015 .

[28]  Roger C. Bales,et al.  Interannual variations of snow accumulation on the Greenland Ice Sheet (1985–1996): new observations versus model predictions , 2000 .

[29]  X. Fettweis,et al.  A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015) , 2016 .

[30]  M. Sharp,et al.  Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland , 2006 .

[31]  X. Fettweis Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR , 2007 .

[32]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .

[33]  Jason Lowe,et al.  Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models , 2012 .

[34]  Ian M. Howat,et al.  On the recent contribution of the Greenland ice sheet to sea level change , 2016 .

[35]  J. Ettema,et al.  Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance , 2010 .

[36]  Roger J. Braithwaite Can the Mass Balance of a Glacier be Estimated from its Equilibrium-Line Altitude? , 1984 .

[37]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[38]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[39]  E. Meijgaard,et al.  Temperature and Wind Climate of the Antarctic Peninsula as Simulated by a High-Resolution Regional Atmospheric Climate Model , 2015 .

[40]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016) , 2017 .

[41]  Helmut Rott,et al.  The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations , 2015, Remote. Sens..

[42]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[43]  A. B. Mikkelsen,et al.  Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet , 2015 .

[44]  Jason E. Box,et al.  Quantifying the Surface Energy Fluxes in South Greenland during the 2012 High Melt Episodes Using In-situ Observations , 2016, Front. Earth Sci..

[45]  Lora Koenig,et al.  Operation icebridge: Using instrumented aircraft to bridge the observational gap between icesat and icesat-2 , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[46]  E. Willerslev,et al.  Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 , 2015, Nature.

[47]  J. Box,et al.  The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012 , 2016 .

[48]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[49]  Alun Hubbard,et al.  Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations , 2012 .

[50]  G. Liston,et al.  The Influence of Air Temperature Inversions on Snowmelt and Glacier Mass Balance Simulations, Ammassalik Island, Southeast Greenland , 2010 .

[51]  R. Fausto,et al.  Climatology and ablation at the South Greenland ice sheet margin from automatic weather station observations , 2009 .

[52]  J. Box,et al.  Darkening of the Greenland ice sheet due to the melt-albedo feedback observed at PROMICE weather stations , 1969 .

[53]  Xavier Fettweis,et al.  Surface mass balance model intercomparison for the Greenland ice sheet , 2012 .

[54]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[55]  W. J. van de Berg,et al.  Brief Communication: Upper air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. , 2016, The cryosphere.

[56]  X. Fettweis,et al.  Arctic cut-off high drives the poleward shift of a new Greenland melting record , 2016, Nature Communications.

[57]  M. R. van den Broeke,et al.  Temporal and Spatial Variations of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice Sheet , 2008 .

[58]  X. Fettweis,et al.  Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" , 2012 .

[59]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[60]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[61]  R. Fausto,et al.  Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer , 2012, Journal of Glaciology.

[62]  Steen Savstrup Kristensen,et al.  Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011) , 2015 .

[63]  E. Mosley‐Thompson,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009) , 2013 .

[64]  J. McConnell,et al.  Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar , 2013, Annals of Glaciology.

[65]  K. Kjær,et al.  The response of the southern Greenland ice sheet to the Holocene thermal maximum , 2015 .

[66]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[67]  Niels Reeh,et al.  New precipitation and accumulation maps for Greenland , 1991 .

[68]  Jason E. Box,et al.  Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data , 2004 .

[69]  B. Hasholt,et al.  Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers , 2016, Journal of Glaciology.

[70]  Baptiste Vandecrux,et al.  Liquid Water Flow and Retention on the Greenland Ice Sheet in the Regional Climate Model HIRHAM5: Local and Large-Scale Impacts , 2017, Front. Earth Sci..

[71]  J. Christensen,et al.  Very high resolution regional climate model simulations over Greenland: Identifying added value , 2012 .

[72]  Jason E. Box,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010) , 2013 .

[73]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[74]  E. Meijgaard,et al.  Drifting snow climate of the Greenland ice sheet: a study with a regional climate model , 2012 .

[75]  K. Steffen,et al.  Sublimation on the Greenland Ice Sheet from automated weather station observations , 2001 .