A compact divergence-free H(div)-conforming finite element method for Stokes flows

In this paper, we construct a $P_{1}^{c}\oplus RT0-P0$ discretization of the Stokes equations for general simplicial meshes in two/three dimensions (2D/3D), which yields a exactly divergence-free and pressure-independent velocity approximation with optimal order. Some interesting properties of $RT0$ are fully utilized. Unlike the popular H(div)-conforming methods in a discontinuous Galerkin (DG) framework, our scheme only consists of integrals on each element, and does not involve any trace operators such as jumps and averages on the element interfaces. We propose a simple stabilization on $RT0$ which only acts on the diagonal of the coefficient matrix. The stencil of our method is the same as the lowest order Bernardi and Raugel (B-R) element method (see C. Bernardi and G. Raugel, Math. Comp., 44 (1985), pp. 71-79). Finally, by a diagonal perturbation of the bilinear form, we further decouple the unknowns corresponding to $P_{1}^{c}$ and $RT0$, solving a stabilized $P_{1}^{c}-P0$ discretization first. Then the $RT0$ part can be obtained locally and explicitly. Numerical experiments illustrating the robustness of our methods are also provided.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[3]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[4]  Guzmán Johnny,et al.  A family of nonconforming elements for the Brinkman problem , 2012 .

[5]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[6]  Rolf Stenberg,et al.  H(div)-conforming Finite Elements for the Brinkman Problem , 2011 .

[7]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[8]  GUIDO KANSCHAT,et al.  Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods , 2014, SIAM J. Numer. Anal..

[9]  L. Zikatanov,et al.  New stabilized discretizations for poroelasticity and the Stokes’ equations , 2017, Computer Methods in Applied Mechanics and Engineering.

[10]  Junping Wang,et al.  A Robust Numerical Method for Stokes Equations Based on Divergence-Free H(div) Finite Element Methods , 2009, SIAM J. Sci. Comput..

[11]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[12]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[13]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[14]  Nicolas R. Gauger,et al.  On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.

[15]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[16]  Alexander Linke,et al.  On velocity errors due to irrotational forces in the Navier-Stokes momentum balance , 2016, J. Comput. Phys..

[17]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[18]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[19]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[20]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[21]  Xuecheng Tai,et al.  A discrete de Rham complex with enhanced smoothness , 2006 .

[22]  M. Neilan,et al.  Conforming and divergence-free Stokes elements in three dimensions , 2013 .

[23]  Junping Wang,et al.  New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..

[24]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[25]  Michael Neilan,et al.  Discrete and conforming smooth de Rham complexes in three dimensions , 2015, Math. Comput..

[26]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[27]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[28]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[29]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[30]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[31]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[32]  Ye,et al.  FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS , 2008 .

[33]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .