Multiversal Polymorphic Algebraic Theories: Syntax, Semantics, Translations, and Equational Logic
暂无分享,去创建一个
[1] Marcelo. Fiore. Discrete Generalised Polynomial Functors ( Extended , 2012 .
[2] Makoto Hamana,et al. Polymorphic Abstract Syntax via Grothendieck Construction , 2011, FoSSaCS.
[3] Makoto Hamana,et al. A foundation for GADTs and inductive families: dependent polynomial functor approach , 2011, WGP@ICFP.
[4] I. Stark. Free-Algebra Models for the π-Calculus , 1997 .
[5] Erik Palmgren,et al. Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..
[6] Chung-Kil Hur,et al. Second-order equational logic , 2010, CSL 2010.
[7] R. A. G. Seely,et al. Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.
[8] Tom Leinster. Higher Operads, Higher Categories , 2003 .
[9] Jean-Yves Girard,et al. The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..
[10] Sam Staton,et al. Two Cotensors in One: Presentations of Algebraic Theories for Local State and Fresh Names , 2009, MFPS.
[11] Ola Mahmoud,et al. Second-order algebraic theories , 2011 .
[12] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[13] Chung-Kil Hur,et al. On the construction of free algebras for equational systems , 2009, Theor. Comput. Sci..
[14] Marcelo P. Fiore,et al. Second-Order and Dependently-Sorted Abstract Syntax , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[15] Chung-Kil Hur,et al. Second-Order Equational Logic (Extended Abstract) , 2010, CSL.
[16] Makoto Hamana. Higher-order semantic labelling for inductive datatype systems , 2007, PPDP '07.
[17] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[18] Marino Miculan,et al. A framework for typed HOAS and semantics , 2003, PPDP '03.
[19] Christopher Strachey,et al. Fundamental Concepts in Programming Languages , 2000, High. Order Symb. Comput..
[20] Marcelo P. Fiore,et al. Mathematical Models of Computational and Combinatorial Structures , 2005, FoSSaCS.
[21] Ken-etsu Fujita,et al. Galois Embedding from Polymorphic Types into Existential Types , 2005, TLCA.
[22] Robert Paré,et al. Abstract families and the adjoint functor theorems , 1978 .
[23] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[24] Gordon D. Plotkin,et al. Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[25] Davide Sangiorgi,et al. Behavioral equivalence in the polymorphic pi-calculus , 2000, JACM.
[26] Martin Hofmann. Semantical analysis of higher-order abstract syntax , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[27] Martin Hyland,et al. Wellfounded Trees and Dependent Polynomial Functors , 2003, TYPES.
[28] Gordon D. Plotkin,et al. Notions of Computation Determine Monads , 2002, FoSSaCS.
[29] Makoto Hamana. Universal Algebra for Termination of Higher-Order Rewriting , 2005, RTA.
[30] Giuseppe Castagna,et al. Parametric polymorphism for XML , 2005, POPL '05.
[31] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[32] Rasmus Ejlers Møgelberg. From parametric polymorphism to models of polymorphic FPC , 2009, Mathematical Structures in Computer Science.
[33] F. William Lawvere,et al. Adjointness in Foundations , 1969 .
[34] Chung-Kil Hur,et al. Strongly Typed Term Representations in Coq , 2011, Journal of Automated Reasoning.
[35] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[36] Makoto Hamana,et al. An initial algebra approach to term rewriting systems with variable binders , 2006, High. Order Symb. Comput..
[37] Makoto Hamana. Free S-Monoids: A Higher-Order Syntax with Metavariables , 2004, APLAS.