Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation

We are concerned with an integral method applied to the solution of the Helmholtz equation where the linear system is solved using an iterative method. We need to perform matrix-vector products whose time and memory requirements increase as a function of the wavenumber k. Many methods have been developed to speed up the matrix-vector product calculation or to reduce the size of the system. Microlocal discretization methods enable one to consider new systems with reduced size. Another method, the fast multipole method, is one of the most efficient and robust methods used to speed up the calculation of matrix-vector products. In this paper, a coupling of these two recently developed methods is presented. This coupling enables one to reduce CPU time very efficiently for large wavenumbers. Satisfactory numerical tests are also presented to confirm the theoretical study within a new integral formulation. Results are obtained for a sphere with a size of 26λ using a resolution based on a mesh with an average edge length of about 2λ, where λ is the wavelength. Results are also given for an industrial test case from Dassault-Aviation, the Cetaf.

[1]  A. De La Bourdonnaye UNE METHODE DE DISCRETISATION MICROLOCALE ET SON APPLICATION A UN PROBLEMEDE DIFFRACTION , 1994 .

[2]  T. Abboud,et al.  Méthode des équations intégrales pour les hautes fréquences , 1994 .

[3]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[4]  Jiming Song,et al.  Error Analysis for the Numerical Evaluation of the Diagonal Forms of the Scalar Spherical Addition Theorem , 1999 .

[5]  Jussi Rahola,et al.  Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems , 1995 .

[6]  Eric Darve,et al.  Fast-multipole method: a mathematical study , 1997 .

[7]  B. Després,et al.  Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur , 1997 .

[8]  Jianming Jin,et al.  Fast solution methods in electromagnetics , 1997 .

[9]  Armel de La Bourdonnaye,et al.  High frequency approximation of integral equations modeling scattering phenomena , 1994 .

[10]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[11]  V. Rokhlin,et al.  Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[14]  Daniel Bouche,et al.  Méthodes asymptotiques en électromagnétisme , 1994 .

[15]  Weng Cho Chew,et al.  A ray‐propagation fast multipole algorithm , 1994 .

[16]  Bin Zhou Methode des equations integrales pour la resolution des problemes de diffraction a hautes frequences , 1995 .

[17]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[18]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[19]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[20]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[21]  Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems , 2000 .

[22]  Michael Taylor,et al.  Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , 1985 .

[23]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[24]  Fast multipole method and microlocal discretization for the 3-D Helmholtz equation , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[25]  Bruno Stupfel,et al.  A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem , 2001 .

[26]  Vasili M. Babič,et al.  Short-Wavelength Diffraction Theory , 1991 .

[27]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[28]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[29]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.