Molecular dynamics study of cristobalite silica using a charge transfer three-body potential: Phase transformation and structural disorder

Structural and dynamic properties of cristobalite silica have been studied using molecular dynamics simulations based on a charge transfer three-body potential model. In this potential model, the directional covalent bonding of SiO 2 is characterized by a charge transfer function of the interatomic distance between Si and O atoms, and in the form of Si‐O‐Si and O‐Si‐Othree-body interactions. The dynamic properties such as infrared spectra and density of states at room and elevated temperatures are in excellent agreement with experiments, and are also consistent with the recently proposed rigid unit modes model. The a- and b-cristobalite crystallographic structures are well reproduced in this model, and the transition between these modifications occurs reversibly and reproducibly in simulations, both as a result of changes in pressure and temperature. The thermally induced transition results in a significantly more disordered b-cristobalite than the pressure-induced b-cristobalite at room temperature. While simulated a-cristobalite exhibits a positive thermal expansion coefficient, it is almost zero forb-cristobalite up to 2000 K and slightly negative at higher temperatures, confirming results from recent x-ray diffraction experiments and other simulations with potential models based on ab initio calculations. © 2003 American Institute of Physics. @DOI: 10.1063/1.1529684#

[1]  Yuen,et al.  Molecular dynamics of liquid SiO2 under high pressure. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  R. Withers,et al.  An electron diffraction and lattice-dynamical study of the diffuse scattering in β-cristobalite, SiO2 , 1988 .

[3]  R. Wyckoff Crystal structure of high temperature cristobalite , 1925 .

[4]  R. Withers,et al.  Phase transitions in cristobalite and related structures studied by variable temperature infra-red emission spectroscopy , 1994 .

[5]  P. H. Berens,et al.  Molecular dynamics and spectra. I. Diatomic rotation and vibration , 1981 .

[6]  G. V. Gibbs,et al.  Applications of quantum mechanical potential surfaces to mineral physics calculations , 1987 .

[7]  Kramer,et al.  Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab initio calculations. , 1991, Physical review. B, Condensed matter.

[8]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[9]  J. Faber,et al.  Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature , 1985 .

[10]  D. Keen,et al.  Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering , 1999 .

[11]  R. Withers,et al.  An optical transform and Monte Carlo study of the disorder in β-cristobalite SiO2 , 1989 .

[12]  J. Kieffer,et al.  Molecular dynamic simulations of the α-β phase transition in silica cristobalite , 1998 .

[13]  King,et al.  Interatomic potentials and the structural properties of silicon dioxide under pressure. , 1990, Physical review. B, Condensed matter.

[14]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[15]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[16]  K. Okazaki,et al.  Molecular dynamics study of the thermal behaviour of silica glass/melt and cristobalite , 2001 .

[17]  Martin T. Dove,et al.  Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling , 2001 .

[18]  R. Withers,et al.  The structure and microstructure of α-cristobalite and its relationship to β-cristobalite , 1989 .

[19]  Martin T. Dove,et al.  Low-frequency floppy modes in β-cristobalite. , 1993 .

[20]  C. Catlow,et al.  Computer modelling of silicates , 1987 .

[21]  T. Hahn International tables for crystallography , 2002 .

[22]  D. Anderson,et al.  Molecular dynamic simulations of the infrared dielectric response of silica structures , 1993 .

[23]  C. J. Hostetler,et al.  Application of empirical ionic models to SiO2 liquid: Potential model approximations and integration of SiO2 polymorph data , 1987 .

[24]  I. Swainson,et al.  Molecular dynamics simulation of alpha - and beta -cristobalite , 1995 .

[25]  H. C. Andersen,et al.  TEST OF A PAIRWISE ADDITIVE IONIC POTENTIAL MODEL FOR SILICA , 1991 .

[26]  J. Mayer,et al.  Interatomic Distances in Crystals of the Alkali Halides , 1933 .

[27]  I. Swainson,et al.  Direct measurement of the Si–O bond length and orientational disorder in the high-temperature phase of cristobalite , 1997 .

[28]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[29]  P. Richet,et al.  High‐temperature dynamics in cristobalite (SiO2) and Carnegieite (NaAlSiO4): A Raman Spectroscopy Study , 1999 .

[30]  A. Jansen,et al.  Ab initio approach to the development of interatomic potentials for the shell model of silica polymorphs , 1994 .

[31]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[32]  Chelikowsky,et al.  Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.

[33]  Martin T. Dove,et al.  Landau free energy and order parameter behaviour of theα/βphase transition in cristobalite , 1992 .

[34]  R. Kirkpatrick,et al.  Constraints on the structure and dynamics of the β-cristobalite polymorphs of SiO2 and AlPO4 from 31P, 27Al and 29Si NMR spectroscopy to 770 K , 1993 .

[35]  I. Farnan,et al.  Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in-situ high temperature 29Si and 17O NMR , 1992 .

[36]  C. Kittel Introduction to solid state physics , 1954 .

[37]  S. Garofalini,et al.  Empirical three‐body potential for vitreous silica , 1988 .

[38]  Hideo Aoki,et al.  New pressure-induced structural transformations in silica obtained by computer simulation , 1989, Nature.

[39]  A. Wright,et al.  The structures of the β-cristobalite phases of SiO2 and AlPO4 , 1975 .

[40]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[41]  Allan,et al.  Nonlocal pseudopotentials in molecular-dynamical density-functional theory: Application to SiO2. , 1987, Physical review letters.

[42]  I. Swainson,et al.  On the thermal expansion of β-cristobalite , 1995 .

[43]  C. Catlow,et al.  Computer Simulation Studies of Zeolite Structure , 1988 .

[44]  Aoki,et al.  First-principles interatomic potential of silica applied to molecular dynamics. , 1988, Physical review letters.

[45]  D. Keen,et al.  LETTER TO THE EDITOR: Simultaneous analysis of changes in long-range and short-range structural order at the displacive phase transition in quartz , 2000 .

[46]  C. R. A. Catlow,et al.  Interatomic potentials for SiO2 , 1984 .

[47]  D. Hatch,et al.  The α-β phase transition in cristobalite, SiO2 , 1991 .

[48]  V. Heine,et al.  Rigid unit modes and dynamic disorder: SiO2 cristobalite and quartz , 1999 .

[49]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[50]  King,et al.  Pressure dependence of the structural properties of alpha -quartz near the amorphous transition. , 1991, Physical review. B, Condensed matter.

[51]  G. V. Gibbs,et al.  Quantum mechanical potential surfaces and calculations on minerals and molecular clusters , 1988 .

[52]  J. Tse,et al.  The structure and dynamics of silica polymorphs using a two-body effective potential model , 1991 .

[53]  E. Salje Hard mode Spectroscopy: Experimental studies of structural phase transitions , 1992 .

[54]  P. Richet,et al.  Quartz and Cristobalite: high‐temperature cell parameters and volumes of fusion , 1998 .