The numerical solution of the nonlinear Klein-Gordon and Sine-Gordon equations using the Chebyshev tau meshless method

Abstract In this work, we study the numerical solutions of one-dimensional Klein–Gordon and Sine–Gordon equations using the Chebyshev tau meshless method based on the integration–differentiation (CTMMID). First, we apply CTMMID to discretize both space and time variables. The initial and boundary conditions could be incorporated efficiently with full CTMMID. Furthermore, we introduce the Domain Decomposition Method (DDM) in space and the block-marching technique in time for problems defined in large interval and long time computing. The numerical results are more accurate and with less computational effort than some existing studies.

[1]  Mehdi Dehghan,et al.  Numerical solution of the Klein–Gordon equation via He’s variational iteration method , 2007 .

[2]  Mehdi Dehghan,et al.  Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements , 2009 .

[3]  Mehdi Dehghan,et al.  Implementation of meshless LBIE method to the 2D non‐linear SG problem , 2009 .

[4]  Abdul-Majid Wazwaz,et al.  New travelling wave solutions to the Boussinesq and the Klein–Gordon equations , 2008 .

[5]  Mehdi Dehghan,et al.  The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation , 2008 .

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[8]  Xionghua Wu,et al.  Chebyshev tau matrix method for Poisson-type equations in irregular domain , 2009 .

[9]  Jalil Rashidinia,et al.  Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[10]  Mehdi Dehghan,et al.  A numerical method for one‐dimensional nonlinear Sine‐Gordon equation using collocation and radial basis functions , 2008 .

[11]  Mehdi Dehghan,et al.  Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[12]  Renhong Wang,et al.  Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation , 2012, Appl. Math. Comput..

[13]  Mehdi Dehghan,et al.  Fourth-order compact solution of the nonlinear Klein-Gordon equation , 2009, Numerical Algorithms.

[14]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[15]  Mehdi Dehghan,et al.  Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein-Gordon equation , 2010, Comput. Phys. Commun..

[16]  Bengisen Pekmen,et al.  Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations , 2012, Comput. Phys. Commun..

[17]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[18]  Mingrong Cui Fourth‐order compact scheme for the one‐dimensional sine‐Gordon equation , 2009 .

[19]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .

[20]  Mehdi Dehghan,et al.  Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method , 2010 .

[21]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[22]  Wenting Shao,et al.  Chebyshev tau meshless method based on the integration–differentiation for Biharmonic-type equations on irregular domain , 2012 .

[23]  B. M. Fulk MATH , 1992 .

[24]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[25]  Mehdi Dehghan,et al.  Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..