Variational bounds for thermal fields in media with heterogeneous microstructure
暂无分享,去创建一个
[1] G. B.. The Dynamical Theory of Gases , 1916, Nature.
[2] L. Rayleigh,et al. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .
[3] Somnath Ghosh,et al. Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method , 2011 .
[4] S. Torquato. Random Heterogeneous Materials , 2002 .
[5] T. Zohdi. Statistical ensemble error bounds for homogenized microheterogeneous solids , 2005 .
[6] Toshio Mura,et al. Micromechanics of defects in solids , 1982 .
[7] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[8] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[9] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[10] C. Huet,et al. Universal conditions for assimilation of a heterogeneous material to an effective continuum , 1982 .
[11] Z. Hashin. Analysis of Composite Materials—A Survey , 1983 .
[12] C. Huet,et al. On the definition and experimental determination of effective constitutive equations for assimilating heterogeneous materials , 1984 .
[13] Somnath Ghosh,et al. Computational methods for microstructure-property relationships , 2011 .
[14] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[15] T. Zohdi. Electromagnetic Properties of Multiphase Dielectrics , 2012 .