Site-specific incorporation of phosphotyrosine using an expanded genetic code

Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key for understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analogue that is convertible into native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine site and function, and reveal a possible negative regulation role of tyrosine phosphorylation in ubiquitination.

[1]  T. Muir,et al.  Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated T beta RI kinase. , 2004, Biochemistry.

[2]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[3]  P. Cole,et al.  The chemical biology of protein phosphorylation. , 2009, Annual review of biochemistry.

[4]  Farren J. Isaacs,et al.  A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation , 2015, Nature Communications.

[5]  M. Rapé,et al.  The increasing complexity of the ubiquitin code , 2016, Nature Cell Biology.

[6]  P. Schultz,et al.  An efficient system for the evolution of aminoacyl-tRNA synthetase specificity , 2002, Nature Biotechnology.

[7]  J. Noel,et al.  Expanding the Library and Substrate Diversity of the Pyrrolysyl‐tRNA Synthetase to Incorporate Unnatural Amino Acids Containing Conjugated Rings , 2013, Chembiochem : a European journal of chemical biology.

[8]  A. Burkhardt,et al.  Synthesis and Application of Fmoc-O-[Bis(dimethylamino)phosphono]tyrosine, a Versatile Protected Phosphotyrosine Equivalent , 1995 .

[9]  S. Hardy,et al.  Inside the human cancer tyrosine phosphatome , 2010, Nature Reviews Cancer.

[10]  Farren J. Isaacs,et al.  Robust production of recombinant phosphoproteins using cell-free protein synthesis , 2015, Nature Communications.

[11]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[12]  H. Cang,et al.  Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity , 2013, Nature Methods.

[13]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[14]  Sean J. Humphrey,et al.  Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation , 2015, Trends in Endocrinology & Metabolism.

[15]  C. Weise,et al.  Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. , 2009, Angewandte Chemie.

[16]  P. Schultz,et al.  A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. , 2007, ACS chemical biology.

[17]  J. Noel,et al.  Stereochemical Basis for Engineered Pyrrolysyl-tRNA Synthetase and the Efficient in Vivo Incorporation of Structurally Divergent Non-native Amino Acids , 2011, ACS chemical biology.

[18]  T. Hunter,et al.  Oncogenic kinase signalling , 2001, Nature.

[19]  David Komander,et al.  Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis , 2014, The EMBO journal.

[20]  J. Hurwitz,et al.  Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination , 2014, Proceedings of the National Academy of Sciences.

[21]  Joseph P Noel,et al.  Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. , 2014, Angewandte Chemie.

[22]  Tony Pawson,et al.  Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases , 2009, Science Signaling.

[23]  D. Söll,et al.  Expanding the genetic code of Escherichia coli with phosphotyrosine , 2016, FEBS letters.

[24]  J. Chin,et al.  Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. , 2015, Nature chemical biology.

[25]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[26]  P. Cole,et al.  Synthetic approaches to protein phosphorylation. , 2015, Current opinion in chemical biology.

[27]  T. Hunter Tyrosine phosphorylation: thirty years and counting. , 2009, Current opinion in cell biology.

[28]  A. Brik,et al.  Chemical Synthesis of Phosphorylated Histone H2A at Tyr57 Reveals Insight into the Inhibition Mode of the SAGA Deubiquitinating Module. , 2016, Angewandte Chemie.

[29]  P. O'Donoghue,et al.  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping , 2016, FEBS letters.

[30]  Tony Pawson,et al.  Phosphotyrosine Signaling: Evolving a New Cellular Communication System , 2010, Cell.