A High‐Energy‐Density Multiple Redox Semi‐Solid‐Liquid Flow Battery

A new concept of multiple redox semi-solid-liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI-S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L−1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi-functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide-open opportunities to develop high-energy-density flow batteries.

[1]  Yi-Chun Lu,et al.  Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries , 2015, Nature Communications.

[2]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[3]  A. Manthiram,et al.  In Charge of the World: Electrochemical Energy Storage. , 2013, The journal of physical chemistry letters.

[4]  Gang Li,et al.  Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. , 2014, Angewandte Chemie.

[5]  Yu Ding,et al.  A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. , 2015, Nano letters.

[6]  Zhengcheng Zhang,et al.  Improved performance of lithium–sulfur battery with fluorinated electrolyte , 2013 .

[7]  Jean-Marie Tarascon,et al.  Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries , 2013 .

[8]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[9]  Yarong Wang,et al.  A Li-liquid cathode battery based on a hybrid electrolyte. , 2011, ChemSusChem.

[10]  S. Ye,et al.  Rechargeable lithium/iodine battery with superior high-rate capability by using iodine–carbon composite as cathode , 2011 .

[11]  V. Presser,et al.  Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors , 2013 .

[12]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[13]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[14]  王婷婷,et al.  基于COMSOL的微型直接甲醇燃料电池的数值模拟 Numerical Simulation of Micro Direct Methanol Fuel Cells Using COMSOL , 2014 .

[15]  Yutao Li,et al.  A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. , 2015, Chemical Society reviews.

[16]  Zhian Zhang,et al.  Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading , 2013 .

[17]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[18]  Xianfeng Li,et al.  Vanadium Flow Battery for Energy Storage: Prospects and Challenges. , 2013, The journal of physical chemistry letters.

[19]  Jun Chen,et al.  Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. , 2015, Nano letters.

[20]  D. Zhao,et al.  A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres , 2013, Nature Communications.

[21]  Jun Liu,et al.  Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery , 2015, Nature Communications.

[22]  Y. Gogotsi,et al.  Materials for suspension (semi-solid) electrodes for energy and water technologies. , 2015, Chemical Society reviews.

[23]  Changyin Jiang,et al.  Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries , 2004 .

[24]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[25]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[26]  J. Bao,et al.  Studies on pressure losses and flow rate optimization in vanadium redox flow battery , 2014 .

[27]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[28]  Chris Menictas,et al.  Performance of vanadium-oxygen redox fuel cell , 2011 .

[29]  Hyungsun Kim,et al.  Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries , 2011 .

[30]  H. Gasteiger,et al.  Probing the Lithium−Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study , 2014 .

[31]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[32]  Gareth H. McKinley,et al.  Biphasic Electrode Suspensions for Li‐Ion Semi‐solid Flow Cells with High Energy Density, Fast Charge Transport, and Low‐Dissipation Flow , 2015 .

[33]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy & Environmental Science.

[34]  Kensuke Takechi,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[35]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[36]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[37]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[38]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[39]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[40]  D. Aurbach,et al.  The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems. , 2014, The journal of physical chemistry letters.

[41]  W. Craig Carter,et al.  Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries , 2012 .

[42]  Jun Liu,et al.  On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries , 2015 .

[43]  Arumugam Manthiram,et al.  Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer , 2012, Nature Communications.

[44]  Chris Menictas,et al.  A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte , 2016 .

[45]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[46]  Jun Liu,et al.  Towards High‐Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species , 2015 .

[47]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[48]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[49]  Pierre-Louis Taberna,et al.  Non-Aqueous Li-Based Redox Flow Batteries , 2012 .

[50]  Faizur Rahman,et al.  Vanadium redox battery: Positive half-cell electrolyte studies , 2009 .

[51]  Sean E. Doris,et al.  Supramolecular Perylene Bisimide-Polysulfide Gel Networks as Nanostructured Redox Mediators in Dissolved Polysulfide Lithium–Sulfur Batteries , 2015 .

[52]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[53]  Michael Grätzel,et al.  Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. , 2013, Physical chemistry chemical physics : PCCP.

[54]  Hye Ryung Byon,et al.  High‐Performance Lithium‐Iodine Flow Battery , 2013 .

[55]  S. Lindquist,et al.  Donor–acceptor interaction between non-aqueous solvents and I2 to generate I−3, and its implication in dye sensitized solar cells , 1999 .

[56]  C. R. Dennison,et al.  The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery , 2012 .

[57]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[58]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[59]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[60]  A. I. Popov,et al.  Studies on the Chemistry of Halogens and of Polyhalides. V. Spectrophotometric Study of Polyhalogen Complexes in Acetonitrile and in Ethylene Dichloride , 1955 .

[61]  Qing Wang,et al.  High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane , 2015, Science Advances.

[62]  W. Cho,et al.  Polysulfide dissolution control: the common ion effect. , 2013, Chemical communications.

[63]  J. Lee,et al.  The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries , 2015 .

[64]  Zhengcheng Zhang,et al.  Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. , 2015, ACS applied materials & interfaces.

[65]  Kyle C. Smith,et al.  Maximizing Energetic Efficiency in Flow Batteries Utilizing Non-Newtonian Fluids , 2014 .

[66]  O. Borodin,et al.  Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement , 2015, Advanced materials.