Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.

[1]  Jianning Yu,et al.  Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system , 2009 .

[2]  Henry Leung,et al.  Design and implementation of n-scroll chaotic attractors from a general jerk circuit , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  关新平,et al.  Adaptive synchronization with nonlinear input , 2005 .

[4]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[5]  Leon O. Chua,et al.  Practical stability of impulsive Synchronization between Two nonautonomous Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[6]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[7]  Henry Leung,et al.  Experimental verification of multidirectional multiscroll chaotic attractors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[9]  C. K. Michael Tse,et al.  Adaptive Feedback Synchronization of a General Complex Dynamical Network With Delayed Nodes , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Jinde Cao,et al.  Local Synchronization of a Complex Network Model , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Zheng-Ming Ge,et al.  Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor , 2005 .

[13]  Edward J. Beltrami,et al.  Mathematics for Dynamic Modeling , 1987 .

[14]  Wei Zhang,et al.  Finite-time synchronization of uncertain unified chaotic systems based on CLF☆ , 2009 .

[15]  Y Hata,et al.  Microcomputer engine controls , 1981, Microprocess. Microsystems.

[16]  姜长生,et al.  Chaos synchronization between two different 4D hyperchaotic Chen systems , 2007 .

[17]  Jiangang Zhang,et al.  Bifurcation and chaos of a non-autonomous rotational machine systems , 2008, Simul. Model. Pract. Theory.

[18]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[19]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[20]  Li Guo-Hui,et al.  Chaos synchronization based on intermittent state observer , 2004 .

[21]  Jianping Cai,et al.  Synchronization criteria for non-autonomous chaotic systems via sinusoidal state error feedback control , 2007 .

[22]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[23]  Z. Ge,et al.  Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor , 2007 .

[24]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[25]  Mohammad Pourmahmood Aghababa,et al.  A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs , 2011 .

[26]  Jinde Cao,et al.  Global Synchronization of Linearly Hybrid Coupled Networks with Time-Varying Delay , 2008, SIAM J. Appl. Dyn. Syst..

[27]  Xiaofeng Wu,et al.  Global chaos synchronization of electro-mechanical gyrostat systems via variable substitution control , 2009 .

[28]  Hu Jia,et al.  Adaptive synchronization of uncertain Liu system via nonlinear input , 2008 .

[29]  Zheng-Ming Ge,et al.  Non-linear dynamics and control of chaos for a rotational machine with a hexagonal centrifugal governor with a spring , 2003 .

[30]  吕翎,et al.  Generalized chaos synchronization of a weighted complex network with different nodes , 2010 .

[31]  张卫东,et al.  Chaotic synchronization via linear controller , 2007 .

[32]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[33]  Zheng-Ming Ge,et al.  Regular and chaotic dynamics of a rotational machine with a centrifugal governor , 1999 .

[34]  Xiaofeng Wu,et al.  Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control , 2010 .

[35]  Guanrong Chen,et al.  Theoretical Design and Circuit Implementation of Multidirectional Multi-Torus Chaotic Attractors , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  D. Ji,et al.  Synchronization of two different non-autonomous chaotic systems using fuzzy disturbance observer , 2010 .

[37]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[38]  Zheng-Ming Ge,et al.  Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay , 2005 .

[39]  H. Salarieh,et al.  Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control , 2008 .

[40]  Denis de Carvalho Braga,et al.  Stability and Hopf bifurcation in an hexagonal governor system , 2008 .