Multi-label classification of music by emotion

This work studies the task of automatic emotion detection in music. Music may evoke more than one different emotion at the same time. Single-label classification and regression cannot model this multiplicity. Therefore, this work focuses on multi-label classification approaches, where a piece of music may simultaneously belong to more than one class. Seven algorithms are experimentally compared for this task. Furthermore, the predictive power of several audio features is evaluated using a new multi-label feature selection method. Experiments are conducted on a set of 593 songs with six clusters of emotions based on the Tellegen-Watson-Clark model of affect. Results show that multi-label modeling is successful and provide interesting insights into the predictive quality of the algorithms and features.

[1]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[2]  J. Stephen Downie,et al.  Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata , 2007, ISMIR.

[3]  W. Wundt,et al.  Outline of psychology. , 1897 .

[4]  Yi-Hsuan Yang,et al.  Toward Multi-modal Music Emotion Classification , 2008, PCM.

[5]  T. Kemp,et al.  Mood-based navigation through large collections of musical data , 2005, Second IEEE Consumer Communications and Networking Conference, 2005. CCNC. 2005.

[6]  Ichiro Fujinaga,et al.  Feature Selection Pitfalls and Music Classification , 2006, ISMIR.

[7]  R. Thayer The biopsychology of mood and arousal , 1989 .

[8]  P. Laukka,et al.  Expression, Perception, and Induction of Musical Emotions: A Review and a Questionnaire Study of Everyday Listening , 2004 .

[9]  R. Plutchik The psychology and biology of emotion , 1994 .

[10]  W. Wundt Outlines of Psychology , 1897 .

[11]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[12]  Lie Lu,et al.  Automatic mood detection and tracking of music audio signals , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[13]  P. Farnsworth A STUDY OF THE HEVNER ADJECTIVE LIST , 1954 .

[14]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[15]  H. Schlosberg Three dimensions of emotion. , 1954, Psychological review.

[16]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[17]  K. Oatley Best Laid Schemes: The Psychology of Emotions , 1992 .

[18]  Chong Wang,et al.  MusicSense: contextual music recommendation using emotional allocation modeling , 2007, ACM Multimedia.

[19]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[20]  François Pachet,et al.  Improving Multilabel Analysis of Music Titles: A Large-Scale Validation of the Correction Approach , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[21]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[22]  Dan Yang,et al.  Disambiguating Music Emotion Using Software Agents , 2004, ISMIR.

[23]  C. Krumhansl An exploratory study of musical emotions and psychophysiology. , 1997, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[24]  Sunita Sarawagi,et al.  Discriminative Methods for Multi-labeled Classification , 2004, PAKDD.

[25]  Leonard B. Meyer Emotion and Meaning in Music , 1957 .

[26]  P. Ekman An argument for basic emotions , 1992 .

[27]  T. Eerola,et al.  A comparison of the discrete and dimensional models of emotion in music , 2011 .

[28]  Jens Grivolla,et al.  Multimodal Music Mood Classification Using Audio and Lyrics , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[29]  P. Juslin,et al.  Emotional Expression in Music Performance: Between the Performer's Intention and the Listener's Experience , 1996 .

[30]  Yi-Hsuan Yang,et al.  A Regression Approach to Music Emotion Recognition , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  Piotr Synak,et al.  Multi-Label Classification of Emotions in Music , 2006, Intelligent Information Systems.

[32]  Tao Li,et al.  Detecting emotion in music , 2003, ISMIR.

[33]  Isabelle Peretz,et al.  ception and Performance, 26, 1797–1813. Juslin, PN, & Sloboda, JA (2001). Music and emotion: Theory and re-search. New York: Oxford Univer , 2002 .

[34]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[35]  Beth Logan,et al.  Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.

[36]  J. Russell A circumplex model of affect. , 1980 .

[37]  D. Watson,et al.  On the Dimensional and Hierarchical Structure of Affect , 1999 .

[38]  Yi-Hsuan Yang,et al.  Music emotion classification: a fuzzy approach , 2006, MM '06.

[39]  Peter Kivy,et al.  Sound Sentiment: An Essay on the Musical Emotions, including the complete text of The Corded Shell , 1989 .

[40]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[41]  Zhi-Hua Zhou,et al.  Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization , 2006, IEEE Transactions on Knowledge and Data Engineering.

[42]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[43]  J. Sloboda,et al.  Music and emotion: Theory and research , 2001 .

[44]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[45]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[46]  C. Izard The psychology of emotions , 1991 .

[47]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[48]  J. Panksepp A critical role for "affective neuroscience" in resolving what is basic about basic emotions. , 1992, Psychological review.

[49]  Tao Li,et al.  Toward intelligent music information retrieval , 2006, IEEE Transactions on Multimedia.

[50]  A. Mehrabian Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament , 1996 .

[51]  Saso Dzeroski,et al.  Decision trees for hierarchical multi-label classification , 2008, Machine Learning.