Structure of a glutamate transporter homologue from Pyrococcus horikoshii

[1]  G. Schmalzing,et al.  A Trimeric Quaternary Structure Is Conserved in Bacterial and Human Glutamate Transporters* , 2004, Journal of Biological Chemistry.

[2]  R. Vandenberg,et al.  The Chloride Permeation Pathway of a Glutamate Transporter and Its Proximity to the Glutamate Translocation Pathway* , 2004, Journal of Biological Chemistry.

[3]  M. Kavanaugh,et al.  Fluorometric measurements of conformational changes in glutamate transporters. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Gouaux,et al.  Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. , 2003, Biochemistry.

[5]  M. Hediger,et al.  The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. , 2003, European journal of pharmacology.

[6]  S. Amara,et al.  Excitatory amino acid transporters: keeping up with glutamate , 2002, Neurochemistry International.

[7]  B. Kanner,et al.  The dual-function glutamate transporters: structure and molecular characterisation of the substrate-binding sites. , 2002, Biochimica et biophysica acta.

[8]  S. Amara,et al.  A Hydrophobic Domain in Glutamate Transporters Forms an Extracellular Helix Associated with the Permeation Pathway for Substrates* , 2002, The Journal of Biological Chemistry.

[9]  B. Kanner,et al.  Cysteine-scanning Mutagenesis Reveals a Conformationally Sensitive Reentrant Pore-Loop in the Glutamate Transporter GLT-1* , 2002, The Journal of Biological Chemistry.

[10]  M. Kavanaugh,et al.  Dynamic Equilibrium between Coupled and Uncoupled Modes of a Neuronal Glutamate Transporter* , 2002, The Journal of Biological Chemistry.

[11]  R. Vandenberg,et al.  Distinct Conformational States Mediate the Transport and Anion Channel Properties of the Glutamate Transporter EAAT-1* , 2002, The Journal of Biological Chemistry.

[12]  A. Bendahan,et al.  Proximity of Two Oppositely Oriented Reentrant Loops in the Glutamate Transporter GLT-1 Identified by Paired Cysteine Mutagenesis* , 2002, The Journal of Biological Chemistry.

[13]  S. Amara,et al.  Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[15]  W. Konings,et al.  Glutamate transporters combine transporter- and channel-like features. , 2001, Trends in biochemical sciences.

[16]  W. Konings,et al.  Cysteine-scanning Mutagenesis Reveals a Highly Amphipathic, Pore-lining Membrane-spanning Helix in the Glutamate Transporter GltT* , 2001, The Journal of Biological Chemistry.

[17]  M. Kavanaugh,et al.  Arginine 447 Plays a Pivotal Role in Substrate Interactions in a Neuronal Glutamate Transporter* , 2000, The Journal of Biological Chemistry.

[18]  B. Kanner,et al.  The Accessibility of a Novel Reentrant Loop of the Glutamate Transporter GLT-1 Is Restricted by Its Substrate* , 2000, The Journal of Biological Chemistry.

[19]  S. Amara,et al.  A Model for the Topology of Excitatory Amino Acid Transporters Determined by the Extracellular Accessibility of Substituted Cysteines , 2000, Neuron.

[20]  W. Konings,et al.  A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Dwight E Bergles,et al.  Clearance of glutamate inside the synapse and beyond , 1999, Current Opinion in Neurobiology.

[22]  W. Konings,et al.  Structural Features of the Glutamate Transporter Family , 1999, Microbiology and Molecular Biology Reviews.

[23]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[24]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[25]  B. Kanner,et al.  Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Bendahan,et al.  Biotinylation of Single Cysteine Mutants of the Glutamate Transporter GLT-1 from Rat Brain Reveals Its Unusual Topology , 1998, Neuron.

[27]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[28]  Anastassios V. Tzingounis,et al.  Arachidonic Acid Activates a Proton Current in the Rat Glutamate Transporter EAAT4* , 1998, The Journal of Biological Chemistry.

[29]  S. Amara,et al.  Arachidonic acid elicits a substrate-gated proton current associated with the glutamate transporter EAAT4 , 1998, Nature Neuroscience.

[30]  M. Kavanaugh,et al.  Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Kavanaugh,et al.  Mutation of an Amino Acid Residue Influencing Potassium Coupling in the Glutamate Transporter GLT-1 Induces Obligate Exchange* , 1997, The Journal of Biological Chemistry.

[32]  W. Konings,et al.  Membrane Topology of the C-terminal Half of the Neuronal, Glial, and Bacterial Glutamate Transporter Family* , 1996, The Journal of Biological Chemistry.

[33]  W. Stoffel,et al.  Membrane topology of the high-affinity L-glutamate transporter (GLAST- 1) of the central nervous system , 1996, The Journal of cell biology.

[34]  M. Kavanaugh,et al.  Flux coupling in a neuronal glutamate transporter , 1996, Nature.

[35]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[36]  Berend Tolner,et al.  Cation‐selectivity of the l‐glutamate transporters of Escherichia coli, Bacillus stearothermophilus and Bacillus caldotenax: dependence on the environment in which the proteins are expressed , 1995, Molecular microbiology.

[37]  B. Kanner,et al.  Conformational Changes Monitored on the Glutamate Transporter GLT-1 Indicate the Existence of Two Neurotransmitter-bound States (*) , 1995, The Journal of Biological Chemistry.

[38]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[39]  M. Kavanaugh,et al.  An excitatory amino-acid transporter with properties of a ligand-gated chloride channel , 1995, Nature.

[40]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[43]  A. Pühler,et al.  The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline phosphatase (PhoA) and β-galactosidase (LacZ) , 1993, Molecular and General Genetics MGG.

[44]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[45]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[46]  T A Jones,et al.  Electron-density map interpretation. , 1997, Methods in enzymology.

[47]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[48]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[49]  K D Cowtan,et al.  Phase combination and cross validation in iterated density-modification calculations. , 1996, Acta crystallographica. Section D, Biological crystallography.

[50]  H. Wheal,et al.  Excitatory amino acids and synaptic transmission , 1995 .