Parsimonious nonstationary flood frequency analysis

Abstract There is now widespread awareness of the impact of anthropogenic influences on extreme floods (and droughts) and thus an increasing need for methods to account for such influences when estimating a frequency distribution. We introduce a parsimonious approach to nonstationary flood frequency analysis (NFFA) based on a bivariate regression equation which describes the relationship between annual maximum floods, x, and an exogenous variable which may explain the nonstationary behavior of x. The conditional mean, variance and skewness of both x and y = ln (x) are derived, and combined with numerous common probability distributions including the lognormal, generalized extreme value and log Pearson type III models, resulting in a very simple and general approach to NFFA. Our approach offers several advantages over existing approaches including: parsimony, ease of use, graphical display, prediction intervals, and opportunities for uncertainty analysis. We introduce nonstationary probability plots and document how such plots can be used to assess the improved goodness of fit associated with a NFFA.

[1]  H. Hurst,et al.  A Suggested Statistical Model of some Time Series which occur in Nature , 1957, Nature.

[2]  R. McCuen,et al.  Hydrologic Frequency Analysis Work Group The Hydrologic Frequency Analysis , 2002 .

[3]  C. T. Haan,et al.  2 – Hydrologic Frequency Analysis , 1994 .

[4]  David R. Cox,et al.  Time Series Analysis , 2012 .

[5]  Laura E. Condon,et al.  Climate change and non-stationary flood risk for the upper Truckee River basin , 2014 .

[6]  A. Langousis,et al.  Marginal methods of intensity‐duration‐frequency estimation in scaling and nonscaling rainfall , 2007 .

[7]  Demetris Koutsoyiannis,et al.  Modeling and mitigating natural hazards: Stationarity is immortal! , 2014 .

[8]  A. Sankarasubramanian,et al.  Effect of persistence on trend detection via regression , 2003 .

[9]  Casey Brown,et al.  Special Section on Climate Change and Water Resources: Climate Nonstationarity and Water Resources Management , 2012 .

[10]  Adrian Bowman,et al.  Trend estimation and change point detection in individual climatic series using flexible regression methods , 2012 .

[11]  Jery R. Stedinger,et al.  Regional Skew with Weighted LS Regression , 1986 .

[12]  H. Lins,et al.  Stationarity: Wanted Dead or Alive? 1 , 2011 .

[13]  M. Bayazit,et al.  Nonstationarity of Hydrological Records and Recent Trends in Trend Analysis: A State-of-the-art Review , 2015, Environmental Processes.

[14]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[15]  Richard M. Vogel,et al.  The Probability Plot Correlation Coefficient Test for the Normal, Lognormal, and Gumbel Distributional Hypotheses , 1986 .

[16]  T. Kjeldsen,et al.  Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent? , 2014 .

[17]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[18]  Michel Lang,et al.  Understanding Flood Regime Changes in Europe: A state of the art assessment , 2013 .

[19]  G. Blöschl,et al.  The influence of non-stationarity in extreme hydrological events on flood frequency estimation , 2016 .

[20]  Laura Read,et al.  Reliability, return periods, and risk under nonstationarity , 2015 .

[21]  Holger Rootzén,et al.  Design Life Level: Quantifying risk in a changing climate , 2013 .

[22]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[23]  B. Merz,et al.  Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002 , 2009 .

[24]  W. Kirby,et al.  Computer‐oriented Wilson‐Hilferty transformation that preserves the first three moments and the lower bound of the Pearson type 3 distribution , 1972 .

[25]  Xuezhi Tan,et al.  Nonstationary Analysis of Annual Maximum Streamflow of Canada , 2015 .

[26]  Simple Parameter Estimation Technique for Three-Parameter Generalized Extreme Value Distribution , 2007 .

[27]  Francesco Serinaldi,et al.  Stationarity is undead: Uncertainty dominates the distribution of extremes , 2015 .

[28]  J. Stedinger,et al.  Variance of two- and three-parameter GEV/PWM quantile estimators : formulae, confidence intervals, and a comparison , 1992 .

[29]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[30]  W. L. Lane,et al.  An algorithm for computing moments‐based flood quantile estimates when historical flood information is available , 1997 .

[31]  Yeou-Koung Tung Flood Defense Systems Design by Risk-Based Approaches , 2005 .

[32]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[33]  J. Stedinger,et al.  Getting From Here to Where? Flood Frequency Analysis and Climate 1 , 2011 .

[34]  H. Künkel Frequency analysis. , 1978, Electroencephalography and clinical neurophysiology. Supplement.

[35]  J. Stedinger,et al.  Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data , 2000 .

[36]  Giuliano Di Baldassarre,et al.  Model selection techniques for the frequency analysis of hydrological extremes , 2009 .

[37]  Demetris Koutsoyiannis,et al.  On the credibility of climate predictions , 2008 .

[38]  J. R. Wallis,et al.  On the value of information to flood frequency analysis , 1975 .

[39]  Theresia Petrowa,et al.  Trends in flood magnitude , frequency and seasonality in Germany in the 1 period 1951 – 2002 2 3 , 2009 .

[40]  G. Kuczera Robust Flood Frequency Models , 1982 .

[41]  Jery R. Stedinger,et al.  Fitting log normal distributions to hydrologic data , 1980 .

[42]  Reagan Waskom,et al.  Introduction to the Featured Collection on “Nonstationarity, Hydrologic Frequency Analysis, and Water Management” 1 , 2011 .

[43]  Taesoon Kim,et al.  Regression equations of probability plot correlation coefficient test statistics from several probability distributions , 2008 .

[44]  Richard M. Vogel,et al.  PROBABILITY DISTRIBUTION OF ANNUAL MAXIMUM, MEAN, AND MINIMUM STREAMFLOWS IN THE UNITED STATES , 1996 .

[45]  M. Hipsey,et al.  “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022 , 2013 .

[46]  Bernard Bobée,et al.  Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review , 2006 .

[47]  J. Salas,et al.  Techniques for assessing water infrastructure for nonstationary extreme events: a review , 2018 .

[48]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[49]  Jery R. Stedinger,et al.  Climate Variability and Flood-Risk Management , 2001 .

[50]  G. Villarini,et al.  Spectrum of storm event hydrologic response in urban watersheds , 2013 .

[51]  Robert M. Hirsch,et al.  Has the magnitude of floods across the USA changed with global CO2 levels? , 2012 .

[52]  Richard M. Vogel,et al.  The regional persistence and variability of annual streamflow in the United States , 1998 .

[53]  R. Katz,et al.  Non-stationary extreme value analysis in a changing climate , 2014, Climatic Change.

[54]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[55]  Vladimir Kossobokov,et al.  Extreme events: dynamics, statistics and prediction , 2011 .

[56]  Richard M. Vogel,et al.  A risk‐based approach to flood management decisions in a nonstationary world , 2014 .

[57]  T. Kjeldsen,et al.  Review of applied statistical methods for flood frequency analysis in Europe: WG2 of COST Action ES0901 , 2012 .

[58]  T. Ouarda,et al.  Generalized maximum likelihood estimators for the nonstationary generalized extreme value model , 2007 .

[59]  N. Greis Flood frequency analysis: A review of 1979–1982 , 1983 .

[60]  Erwin Zehe,et al.  Advancing catchment hydrology to deal with predictions under change , 2013 .

[61]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[62]  D. Burn,et al.  A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow , 2014 .

[63]  R. Vogel,et al.  The hydromorphology of an urbanizing watershed using multivariate elasticity , 2014 .

[64]  Richard Vogel,et al.  Probability Plot Goodness‐of‐Fit and Skewness Estimation Procedures for the Pearson Type 3 Distribution , 1991 .

[65]  Demetris Koutsoyiannis,et al.  The scientific legacy of Harold Edwin Hurst (1880–1978) , 2016 .

[66]  M. Ma,et al.  A comparative evaluation of the estimators of the three-parameter lognormal distribution by Monte Carlo simulation , 1990 .

[67]  Gregory J. McCabe,et al.  A step increase in streamflow in the conterminous United States , 2002 .

[68]  Ralf Sander PANTA RHEI – “EVERYTHING FLOWS”Renewable energy sculpture , 2016 .

[69]  J. Ball,et al.  Australian Rainfall and Runoff: A Guide to Flood Estimation , 2016 .

[70]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[71]  Kathleen D. White,et al.  Climate Change and Water Resources Management: A Federal Perspective , 2009 .

[72]  Jasper A. Vrugt,et al.  Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States , 2017 .

[73]  Francesco Laio,et al.  Design flood estimation using model selection criteria , 2009 .

[74]  Timothy A. Cohn,et al.  Nature's style: Naturally trendy , 2005 .

[75]  Jose D. Salas,et al.  Quantifying the Uncertainty of Design Floods under Nonstationary Conditions , 2014 .

[76]  Félix Francés,et al.  Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates , 2013 .

[77]  Donthamsetti Veerabhadra Rao A comparative evaluation of the estimators of the log Pearson type (LP) 3 distribution , 1990 .

[78]  Bruno Merz,et al.  Flood trends and variability in the Mekong river , 2009 .

[79]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[80]  C. Spence,et al.  Nonstationary decision model for flood risk decision scaling , 2016 .

[81]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[82]  Michel Lang,et al.  Review of trend analysis and climate change projections of extreme precipitation and floods in Europe , 2014 .

[83]  Jery R. Stedinger,et al.  CLIMATE VARIABILITY AND FLOOD FREQUENCY ESTIMATION FOR THE UPPER MISSISSIPPI AND LOWER MISSOURI RIVERS 1 , 1999 .

[84]  Michael D. Dettinger,et al.  On Critiques of “Stationarity is Dead: Whither Water Management?” , 2015 .

[85]  J. Stedinger Frequency analysis of extreme events , 1993 .

[86]  John W. Tukey,et al.  Data Analysis and Regression: A Second Course in Statistics , 1977 .

[87]  Murugesu Sivapalan,et al.  Transcending limitations of stationarity and the return period: process‐based approach to flood estimation and risk assessment , 2009 .

[88]  Witold F. Krajewski,et al.  Examining Flood Frequency Distributions in the Midwest U.S. 1 , 2011 .

[89]  R. Stouffer,et al.  Stationarity Is Dead: Whither Water Management? , 2008, Science.

[90]  Ilaria Prosdocimi,et al.  Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK , 2013 .

[91]  Eugene Z. Stakhiv,et al.  Pragmatic Approaches for Water Management Under Climate Change Uncertainty 1 , 2011 .

[92]  Calvin A. Whealton,et al.  Robust flood frequency analysis: Performance of EMA with multiple Grubbs‐Beck outlier tests , 2016 .

[93]  Eric Gilleland,et al.  New Software to Analyze How Extremes Change Over Time , 2011 .

[94]  B. Bobée,et al.  Recent advances in flood frequency analysis , 1995 .

[95]  Christopher P. Konrad,et al.  Effects of Urban Development on Floods , 2003 .

[96]  J. Stedinger,et al.  Guidelines for determining flood flow frequency—Bulletin 17C , 2019, Techniques and Methods.

[97]  T. Kjeldsen,et al.  Detection and attribution of urbanization effect on flood extremes using nonstationary flood‐frequency models , 2015, Water resources research.

[98]  G. Villarini,et al.  On the stationarity of annual flood peaks in the continental United States during the 20th century , 2009 .

[99]  Yvonne Schuhmacher,et al.  Risk Analysis And Uncertainty In Flood Damage Reduction Studies , 2016 .

[100]  Richard M. Vogel,et al.  Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States 1 , 2011 .

[101]  P. Bates,et al.  Flood frequency analysis for nonstationary annual peak records in an urban drainage basin , 2009 .

[102]  Richard M. Vogel,et al.  Brief Communication: Likelihood of societal preparedness for global change: trend detection , 2013 .

[103]  N. Matalas,et al.  Comment on the Announced Death of Stationarity , 2012 .

[104]  J. Salas,et al.  Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events , 2014 .

[105]  Casey Brown,et al.  Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling , 2008 .

[106]  Witold G. Strupczewski,et al.  Non-stationary approach to at-site flood frequency modelling. II. Weighted least squares estimation , 2001 .

[107]  G. Villarini,et al.  The changing nature of flooding across the central United States , 2015 .