Intense aerobic methane oxidation in the Yangtze Estuary: A record from 35-aminobacteriohopanepolyols in surface sediments

[1]  M. Blumenberg,et al.  Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water. , 2009, FEMS microbiology letters.

[2]  H. Talbot,et al.  Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England , 2008 .

[3]  Michael Berg,et al.  How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. , 2008, The Science of the total environment.

[4]  R. Pancost,et al.  The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics , 2008 .

[5]  R. Evershed,et al.  Acute impact of agriculture on high-affinity methanotrophic bacterial populations. , 2008, Environmental microbiology.

[6]  Jing Zhang,et al.  Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer , 2008 .

[7]  C. Cockell,et al.  Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings , 2008 .

[8]  R. Amann,et al.  Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study , 2007 .

[9]  H. Talbot,et al.  Bacterial populations recorded in diverse sedimentary biohopanoid distributions , 2007 .

[10]  J. Milliman,et al.  Flux and fate of Yangtze River sediment delivered to the East China Sea , 2007 .

[11]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[12]  F. Guérin,et al.  Enhanced methane oxidation in an estuarine turbidity maximum , 2007 .

[13]  R. Seifert,et al.  Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). , 2006, Environmental microbiology.

[14]  R. Evershed,et al.  Investigation of the effect of ammonium sulfate on populations of ambient methane oxidising bacteria by 13C-labelling and GC/C/IRMS analysis of phospholipid fatty acids , 2006 .

[15]  Zong-Liang Yang,et al.  Effects of vegetation canopy processes on snow surface energy and mass balances , 2004 .

[16]  S. M. Liu,et al.  Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring , 2004 .

[17]  C. Vetriani,et al.  Fingerprinting Microbial Assemblages from the Oxic/Anoxic Chemocline of the Black Sea , 2003, Applied and Environmental Microbiology.

[18]  N. Iversen,et al.  Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark) , 2002 .

[19]  I. Rusanov,et al.  Microbial Processes of the Methane Cycle at the North-western Shelf of the Black Sea , 2002 .

[20]  D. Valentine,et al.  Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin , 2001 .

[21]  J. Murrell,et al.  Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. , 2001, Journal of chromatography. A.

[22]  K. Kovács,et al.  Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.: phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. , 2000, FEMS microbiology letters.

[23]  M. Bender,et al.  Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions , 1994 .

[24]  M. Scranton,et al.  Fate of methane in the Hudson River and Estuary , 1993 .

[25]  R. Cicerone,et al.  Biogeochemical aspects of atmospheric methane , 1988 .

[26]  M. Rohmer,et al.  Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica. (22S)-35-aminobacteriohopane-30,31,32,33,34-pentol and (22S)-35-amino-3 beta-methylbacteriohopane-30,31,32,33,34-pentol. , 1985, The Biochemical journal.

[27]  M. Rohmer,et al.  The Hopanoids of ‘Methylosinus trichosporium’: minobacteriohopanetriol and Aminobacteriohopanetetrol , 1985 .

[28]  R. Seifert,et al.  Aerobic methanotrophy in the oxic-anoxic transition zone of the black sea water column , 2007 .

[29]  M. Lidstrom,et al.  Microbial Growth on C1 Compounds , 1996, Springer Netherlands.