Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1.

[1]  M. Tapia,et al.  Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation , 2020 .

[2]  M. Jules,et al.  Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis , 2018, Applied and Environmental Microbiology.

[3]  Emilie Gauvry Modélisation de la sporulation de Bacillus subtillis BSB1 et liens physiologiques avec les cinétiques de croissance , 2017 .

[4]  A. Mathot,et al.  Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. , 2017, Research in microbiology.

[5]  O. Igoshin,et al.  Functional requirements of cellular differentiation: lessons from Bacillus subtilis. , 2016, Current opinion in microbiology.

[6]  Jatin Narula,et al.  Slowdown of growth controls cellular differentiation , 2016, Molecular systems biology.

[7]  M. Wiedmann,et al.  Spore populations among bulk tank raw milk and dairy powders are significantly different. , 2015, Journal of dairy science.

[8]  C. Trunet,et al.  Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries. , 2015, Food microbiology.

[9]  Ajay Kumar,et al.  Production, optimization and partial purification of protease from Bacillus subtilis , 2015 .

[10]  M. Carrondo,et al.  Enhanced Spore Production of Bacillus subtilis Grown in a Chemically Defined Medium , 2014 .

[11]  Stanley Brul,et al.  Live Cell Imaging of Germination and Outgrowth of Individual Bacillus subtilis Spores; the Effect of Heat Stress Quantitatively Analyzed with SporeTracker , 2013, PloS one.

[12]  F. Carlin,et al.  Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w). , 2012, Food microbiology.

[13]  M. Hecker,et al.  Cross-talk between the general stress response and sporulation initiation in Bacillus subtilis - the σ(B) promoter of spo0E represents an AND-gate. , 2012, Environmental microbiology.

[14]  S. Pavan,et al.  Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. , 2012, International journal of food microbiology.

[15]  F. Carlin,et al.  Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH. , 2012, Food microbiology.

[16]  B. Schwikowski,et al.  Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis , 2012, Science.

[17]  R. Sen,et al.  Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK-02 vis-à-vis other Bacilli. , 2011, Bioresource technology.

[18]  M. Heyndrickx,et al.  The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing , 2011 .

[19]  J. González-Pastor,et al.  Cannibalism: a social behavior in sporulating Bacillus subtilis. , 2011, FEMS microbiology reviews.

[20]  F. Carlin,et al.  The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history. , 2011, International journal of food microbiology.

[21]  A. Durand,et al.  Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure , 2011, Applied Microbiology and Biotechnology.

[22]  I. Leguerinel,et al.  Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story. , 2010, Food microbiology.

[23]  E. Gouveia,et al.  Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14 , 2010 .

[24]  P. Fernández,et al.  Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values , 2010, Applied and Environmental Microbiology.

[25]  L. J. Q. Teixeira,et al.  Modelagem microbiana da resistência térmica de esporos de Alicyclobacillus acidoterrestris CRA7152 em suco de laranja concentrado com adição de nisina , 2009 .

[26]  J. Errington,et al.  A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. , 2009, Genes & development.

[27]  Dong-Hyun Kang,et al.  Effects of minerals on sporulation and heat resistance of Clostridium sporogenes. , 2008, International journal of food microbiology.

[28]  J. Clemente,et al.  A Procedure for High‐Yield Spore Production by Bacillus s ubtilis , 2008, Biotechnology progress.

[29]  C. Scharf,et al.  Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. , 2006, Microbiology.

[30]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[31]  E. Bremer,et al.  Thermoprotection of Bacillus subtilis by Exogenously Provided Glycine Betaine and Structurally Related Compatible Solutes: Involvement of Opu Transporters , 2004, Journal of bacteriology.

[32]  M. Méndez,et al.  Novel Roles of the Master Transcription Factors Spo0A and σB for Survival and Sporulation of Bacillus subtilis at Low Growth Temperature , 2004, Journal of bacteriology.

[33]  Louis Coroller,et al.  Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products , 2004, Applied and Environmental Microbiology.

[34]  I. Pinchuk,et al.  Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread , 2003, Letters in applied microbiology.

[35]  S. Movahedi,et al.  Cold Shock Response in Sporulating Bacillus subtilis and Its Effect on Spore Heat Resistance , 2002, Journal of bacteriology.

[36]  J. Augustin,et al.  A model describing the effect of temperature history on lag time for Listeria monocytogenes. , 2000, International journal of food microbiology.

[37]  I. Kurtser,et al.  Control of Initiation of Sporulation by Replication Initiation Genes in Bacillus subtilis , 2000, Journal of bacteriology.

[38]  I. Leguerinel,et al.  Modelling combined effects of temperature and pH on the heat resistance of spores ofBacillus cereus , 1998 .

[39]  B M Mackey,et al.  The effect of the growth environment on the lag phase of Listeria monocytogenes. , 1998, International journal of food microbiology.

[40]  C. Stephens,et al.  Bacterial sporulation: A question of commitment? , 1998, Current Biology.

[41]  P. Zuber,et al.  Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH , 1997, Journal of bacteriology.

[42]  T. Ross Indices for performance evaluation of predictive models in food microbiology. , 1996, The Journal of applied bacteriology.

[43]  J P Flandrois,et al.  Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth , 1995, Applied and environmental microbiology.

[44]  A. Grossman,et al.  Extracellular control of spore formation in Bacillus subtilis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Franich,et al.  Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extracellular protease production , 1984, Journal of bacteriology.

[46]  J. Mandelstam,et al.  Sporulation of Bacillus subtilis in Continuous Culture , 1970, Journal of bacteriology.

[47]  L. Lundgren Effect of Variation of Sporulation Time and Temperature on Thermostability of Bacillus cereus Spores , 1967 .

[48]  Larry R. Beuchat,et al.  Food microbiology : fundamentals and frontiers , 2013 .

[49]  S. Bouchoucha,et al.  Surveillance des toxi-infections alimentaires collectives: expérience de trois ans dans la région de Sousse , 1994 .