A genetic algorithm for determining the thickness of a graph
暂无分享,去创建一个
[1] Robert E. Tarjan,et al. An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..
[2] John H. Halton,et al. On the thickness of graphs of given degree , 1991, Inf. Sci..
[3] Michael Jünger,et al. The thickness of a minor-excluded class of graphs , 1998, Discret. Math..
[4] Melanie Mitchell,et al. An introduction to genetic algorithms , 1996 .
[5] Robert J. Cimikowski,et al. On Heuristics for Determining the Thickness of a Graph , 1995, Inf. Sci..
[6] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[7] Erkki Mäkinen,et al. Remarks on the Thickness of a Graph , 1998, Inf. Sci..
[8] Anthony Mansfield,et al. Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] Petra Mutzel,et al. The Thickness of Graphs: A Survey , 1998, Graphs Comb..
[10] J. Moon,et al. On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Edward R. Scheinerman,et al. On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.
[12] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[13] G. Kant. An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .