A Class of minimal generically universally rigid frameworks

Following a review of related results in rigidity theory, we provide a construction to obtain generically universally rigid frameworks with the minimum number of edges, for any given set of n nodes in two or three dimensions. When a set of edge-lengths is compatible with only one configuration in d-dimensions, the framework is globally rigid. When that configuration is unique even if embedded in a higher dimensional space, the framework is universally rigid. In case of generic configurations, where the nodal coordinates are algebraically independent, the minimum number of edges required is equal to dn-d(d+1)/2+1, that is, 2n-2 for d=2, and 3n-5 for d=3. Our contribution is a specific construction for this case by introducing a class of frameworks generalizing that of Gr\"unbaum polygons. The construction applies also to nongeneric configurations, although in this case the number of edges is not necessarily the minimum. One straightforward application is the design of wireless sensor networks or multi-agent systems with the minimum number of communication links.

[1]  R. Connelly Rigidity and energy , 1982 .

[2]  A. Stephen Morse,et al.  Operations on Rigid Formations of Autonomous Agents , 2003, Commun. Inf. Syst..

[3]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[4]  Leslie A. Kuhn,et al.  Flexible and Rigid Regions in Proteins , 2002 .

[5]  László Lovász,et al.  Steinitz Representations of Polyhedra and the Colin de Verdière Number , 2001, J. Comb. Theory, Ser. B.

[6]  Kaveh Pahlavan,et al.  Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking , 2009 .

[7]  Magnus Egerstedt,et al.  Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints , 2007, Mob. Networks Appl..

[8]  M. Thorpe,et al.  Rigidity theory and applications , 2002 .

[9]  Yinyu Ye,et al.  On stress matrices of (d + 1)-lateration frameworks in general position , 2013, Math. Program..

[10]  Anthony Man-Cho So,et al.  Universal Rigidity: Towards Accurate and Efficient Localization of Wireless Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[11]  Branko Grünbaum Lectures on Lost Mathematics , 2010 .

[12]  Kiril Ratmanski,et al.  Universally Rigid Framework Attachments , 2010, 1011.4094.

[13]  Naomi Ehrich Leonard,et al.  Tensegrity Models and Shape Control of Vehicle Formations , 2009, 0902.3710.

[14]  S. Pellegrino,et al.  Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .

[15]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[16]  Yinyu Ye,et al.  On affine motions and bar frameworks in general position , 2010, 1009.3318.

[17]  Bill Jackson,et al.  Graph theoretic techniques in the analysis of uniquely localizable sensor networks , 2009 .

[18]  Robert Connelly,et al.  Tensegrities and Global Rigidity , 2013 .

[19]  Steven J. Gortler,et al.  Characterizing the Universal Rigidity of Generic Frameworks , 2014, Discret. Comput. Geom..