Impact of prior distributions and central tendency measures on Bayesian intravoxel incoherent motion model fitting

Bayesian model fitting has been proposed as a robust alternative for intravoxel incoherent motion (IVIM) model‐fitting parameter estimation. However, consensus regarding choice of prior distribution and posterior distribution central tendency measure is needed. The aim of this study was to compare the quality of IVIM parameter estimates produced by different prior distributions and central tendency measures, and to gain knowledge about the effect of these choices.

[1]  Hamid Dehghani,et al.  Evaluation of intravoxel incoherent motion fitting methods in low‐perfused tissue , 2016, Journal of magnetic resonance imaging : JMRI.

[2]  Tapio Pahikkala,et al.  Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level: Repeatability and gleason score prediction , 2017, Magnetic resonance in medicine.

[3]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[4]  Daniel K Sodickson,et al.  Comparison of fitting methods and b‐value sampling strategies for intravoxel incoherent motion in breast cancer , 2015, Magnetic resonance in medicine.

[5]  P. T. While,et al.  A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI , 2017, Magnetic resonance in medicine.

[6]  G. Pentang,et al.  Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys , 2013, Acta radiologica.

[7]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[8]  Markus Nilsson,et al.  Intravoxel incoherent motion (IVIM) imaging at different magnetic field strengths: what is feasible? , 2014, Magnetic resonance imaging.

[9]  G. Larry Bretthorst,et al.  On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments , 1993, Magnetic resonance in medicine.

[10]  Denis Le Bihan,et al.  Intravoxel incoherent motion perfusion MR imaging: a wake-up call. , 2008, Radiology.

[11]  Mario Sansone,et al.  A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model , 2017, Magnetic Resonance Materials in Physics, Biology and Medicine.

[12]  Dow-Mu Koh,et al.  Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling , 2014, Magnetic resonance in medicine.

[13]  Bram Stieltjes,et al.  Toward an optimal distribution of b values for intravoxel incoherent motion imaging. , 2011, Magnetic resonance imaging.

[14]  Denis Le Bihan,et al.  Intravoxel incoherent motion perfusion MR imaging: a wake-up call. , 2008 .

[15]  Yi Wang,et al.  Primal‐dual and forward gradient implementation for quantitative susceptibility mapping , 2017, Magnetic resonance in medicine.

[16]  A. Luciani,et al.  Liver Cirrhosis : Intravoxel Incoherent Motion MR Imaging — Pilot Study 1 , 2008 .

[17]  W. Hutton,et al.  Exponential Parameter Estimation (in NMR) Using Bayesian Probability Theory , 2005 .

[18]  Simon K. Warfield,et al.  Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves , 2013, Medical Image Anal..

[19]  Sebastiano Barbieri,et al.  Impact of the calculation algorithm on biexponential fitting of diffusion‐weighted MRI in upper abdominal organs , 2016, Magnetic resonance in medicine.

[20]  Jianrong Xu,et al.  Intravoxel incoherent motion diffusion‐weighted MR imaging of breast cancer at 3.0 tesla: Comparison of different curve‐fitting methods , 2015, Journal of magnetic resonance imaging : JMRI.

[21]  David R. Bickel,et al.  On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications , 2005, Comput. Stat. Data Anal..

[22]  Thorsten Feiweier,et al.  Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study. , 2013, Radiology.

[23]  D. Le Bihan,et al.  Quantitative Non-Gaussian Diffusion and Intravoxel Incoherent Motion Magnetic Resonance Imaging: Differentiation of Malignant and Benign Breast Lesions , 2015, Investigative radiology.

[24]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[25]  Moon‐gyu Lee,et al.  Intravoxel incoherent motion diffusion‐weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters , 2017, Journal of magnetic resonance imaging : JMRI.