Псевдодифференциальные операторы на ультраметрических пространствах и ультраметрические всплески@@@Pseudodifferential operators on ultrametric spaces and ultrametric wavelets

[1]  J. Benedetto,et al.  A wavelet theory for local fields and related groups , 2003, math/0312036.

[2]  Сергей Владимирович Козырев,et al.  Теория всплесков как $p$-адический спектральный анализ@@@Wavelet theory as $p$-adic spectral analysis , 2002 .

[3]  On the Replica Fourier Transform , 1997, cond-mat/9709200.

[4]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[5]  Robert L. Benedetto Examples of wavelets for local fields , 2003 .

[6]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[7]  Distributions and measures on the boundary of a tree , 2004 .

[8]  Replica Fourier Transforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices , 1997, cond-mat/9703132.

[9]  B A Huberman,et al.  Ultradiffusion: the relaxation of hierarchical systems , 1985 .

[10]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[11]  F. Choucroun Arbres, espaces ultramétriques et bases de structure uniforme , 1994 .

[12]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[13]  Igor Volovich,et al.  p-adic string , 1987 .

[14]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[15]  Long range diffusion in ultrametric spaces , 1985 .

[16]  Анатолий Наумович Кочубей,et al.  Фундаментальные решения псевдодифференциальных уравнений, связанных с $p$-адическими квадратичными формами@@@Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms , 1998 .

[17]  Alex J. Lemin,et al.  The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT* , 2003 .

[18]  Сергей Владимирович Козырев,et al.  $p$-адические псевдодифференциальные операторы и $p$-адические всплески@@@$p$-Adic Pseudodifferential Operators and $p$-Adic Wavelets , 2004 .

[19]  B. Dragovich,et al.  THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .

[20]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .